Terry Tao and gauge theories

I have found a beatiful post by Terry Tao, a Fields medallist, about gauge theories. See here for a worthwhile reading. This post is truly elucidating and so well written that I thought it was worthing a larger audience.

About these ads

One Response to Terry Tao and gauge theories

  1. carlbrannen says:

    I had read the first few paragraphs of that Terry Tao post and had concluded I wasn’t going to learn anything from it. On your suggestion I’ve looked again, and yes, it is a beautiful post. I like the terms “spent” and “bought”. However, his examples of broken gauge symmetries don’t seem similar to what a physicist thinks of. He seems to see them as methods in proving a result for a symmetry which a physicist would call unbroken.

    I’m busily writing up a paper on the CKM and MNS mixing matrices. Terry’s article makes it clear that one can think of the choice of unitary matrix, that produces a given set of experimental data (i.e. the absolute magnitudes), is a form of gauge freedom. When we choose a particular parameterization we are spending that freedom.

    And the example of the winds on the earth as defining a direction on each point of the earth, except for the hairy billiard ball theorem, reminds me of an analogous fact about spinors, one that is “one brick in the wall” in why I like density matrices over state vectors as far as quantum mechanics goes.

    Suppose for each spin -1/2 spinor, you make a choice of the arbitrary complex phase. For example, you might choose the top component (i.e. the spin up component of the spinor) as real. Then it is a fact that your choice of complex phase cannot be continuous. In this the pure density matrices are more natural.

    And before you ask I should add that the paper I’m writing will be sent in for the painful process of peer review. I still don’t have any great attraction to the process, but my co-author needs to “publish or perish”.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 69 other followers

%d bloggers like this: