A beautiful paper on arxiv

15/05/2009

Keeping on their way of producing sound work, Bogolubsky, Ilgenfritz, Mueller-Preussker and Sternbeck have got their paper (see here) published on Physics Letters B. This is a collaboration between people working in Russia, Germany and Australia. The main aim of this work is the computation on a lattice of the two-point functions and the running coupling of a pure Yang-Mills theory. They carry on lattice computations from (64)^4 to (96)^4 points entering into a deep enough infrared limit to get a meaningful behavior of the lattice theory in this case. I give below their main results

Gluon propagator

Gluon propagator

Dressing function of the ghost propagator

Dressing function of the ghost propagator

Running coupling

Running coupling

These results confirm completely the decoupling solution. The definition of the running coupling is the one proposed by Alkofer and von Smekal and it is my personal conviction that it conveys the right physical behavior of the theory. This is exactly the scenario I have derived in my paper (see here) that has been published on Physics Letters B too and has arisen a lot of rumors around. You will not find this paper cited in this work as these authors have concerns about gauge invariance in my computations. As you may know from my dispute with Terry Tao, gauge invariance is not a problem here. One could ask why a mathematical technique, like a gradient expansion is, should not work for Yang-Mills equations but it does for all other equations of mathematical physics. Anyhow, I am here ready to listen to whoever is able to prove this. With this proof in hand one should also warn all general relativists that use this technique and put it in their handbooks.

The authors conclude their paper by pointing out weaknesses in lattice computations that may bring in discussion their results. Finally, they ask if the other solution, the one with a scaling behavior, can emerge from lattice computations. The understanding of this question is surely of relevant interest. We stay tuned to hear news about.


Follow

Get every new post delivered to your Inbox.

Join 61 other followers

%d bloggers like this: