Looking for the Lucasian Professor

09/04/2014

Michael Green, the current Lucasian Professor, is now 67 and Cambridge University is looking for his substitute (see here). It is interesting that Wikipedia is now reporting rumours from researchers at DAMPT (see here)

As of 3rd April 2014, the University of Cambridge is recruiting the 19th Lucasian Professor. Rumour amongst DAMPT researchers is that the process is a required formality, but that unless there’s a last minute surprise the Lucasian Professorship will be held for the first time by a woman. It may also be the first time that the chair is not held by somebody born in the British Isles.

Wikipedia is generally not doing gossip so I report this here because I think this will not last too long. Anyhow, the procedure will be brief. The candidates should send their CV for 15 April and the chosen one should take up the appointment on 1 September this year.  I would like to remember that this is a really prestigious chair held by Newton, Dirac and Hawking to name just a few. Surely, Cambridge University will choose for the best once again.


Lucasian chair again

13/02/2013

On 22 May, Professor Michael Green, Professor Michael Greenthe incumbent Lucasian Professor at Cambridge University, will be 67 and must retire. He succeeded Stephen Hawking that left this chair for the same reason on 2009. Well before Hawking’s retirement, Cambridge University issued an announcement asking for possible candidates and, after the selection ended, Professor Green come out as the chosen one. This time, no announcement is out from Cambridge and so, it is possible that the successor of Professor Green should be already known. I think the news will be released in the next few months. Till now, no rumors spread.


Curiosity finds organics but where do they come from?

04/12/2012

NASA logoYesterday, at the meeting of the American Geophysical Union in San Francisco, NASA announced first results from soil analysis performed by Curiosity. Indeed, initially there was an eager expectation about this announcement as some rumors leaked out and somebody told about historical results. Then, all this was teased by NASA but what they announced yesterday was all but disappointing. I followed a real-time chronicle on twitter by Emily Lakdawalla (@elakdawalla and check her blog) that was there in San Francisco and it was really exciting. The main point is that Curiosity indeed has found organics but that people at NASA cannot be sure yet that carbon was not from Earth. Anyhow, the analysis of the soil displayed a rich content and this is indeed a riverbed. Some further analysis are required before to give definitive conclusions about the presence of organics. If you need a short summary you can read this article on The Guardian but Emily should provide a complete account shortly.

CuriosityI would like to spend a few words here to let my readers know what is at stake here. On 1975, NASA launched the Viking probes on Mars. One of the aims of this mission was to perform some experiments that should give evidence of life on Mars. A pair of these experiments turned out  to give favorable results giving such an evidence but the probes failed at finding any organic molecules and so these results were interpreted as due to some other chemical process at work. Indeed, the question is open yet. Should Curiosity find any evidence of organic molecular, the original findings of Viking probes would be vindicated but, more important, one should have a first evidence of life, even if bacterial, on another planet. This is for historical book indeed!


Nobel prize to Serge Haroche and David Wineland

09/10/2012

This year Nobel prize went to quantum optics for experiments that could be useful on the road to quantum computation. The awarded are Serge Haroche of the College de France and David Wineland from NIST (US). They performed groundbreaking  studies working with cavities and ion traps on single atoms and photons. I have had the luck to meet and hear from them at several conferences. Their work was also instrumental in moving environmental decoherence from a theoretical concept to an everyday fact of life. There have been some rumors about the possibility that this year’s prize could go to this area of investigation. I would like to remember that for the recent finding at CERN is somehow too early for a prize both for the way procedures go at the Royal Swedish Academy and also because the very nature of the just discovered particle is yet to be ascertained.


Warp drive at NASA

19/09/2012

ResearchBlogging.org

I am currently a twitter user. One of my followings is Jeri Ryan. She has been Seven of Nine in Star Trek Voyager saga. Yesterday, it comes out of the blue what I read in one of her twits: NASA is developing warp drive! Indeed, Jeri was pointing to  this link. This is a Gizmodo’s post that was describing an effort by NASA to develop warp drive and it seemed like something consistent was in hand. Indeed, this is all true. It is a lab at NASA, Eagleworks, headed by Harold White that is working on a technical realization of the most recent ideas from physics in the area of “spacetime engineering”. This is somewhat of a new term as, so far, no ways were at our disposal to modify spacetime even if, in principle, this is a possibility offered by general relativity. If one would be able to do so, we would have warp drive but also time machines, wormholes and all that. White’s group claims to have found some loopholes in all the hurdles encountered so far in this kind of researches. The most fundamental one is that one needs a huge quantity of exotic matter to get some of these devices work. Nothing that is manageable in practice. So, all this matter was always put in an area of research much theoretical oriented. In a quite recent paper, Stefano Finazzi, Stefano Liberati and Carlos Barceló (see here)  show that Alcubierre drive is unstable with respect to quantum effects: Indeed, if you go faster than light, Hawking radiation will kill you.

So, there are some important difficulties to overcome to change the situation from theoretical to a practical one. One of the Editors of Physical Review Letters, Robert Garisto, commented as follows on twitter:

NASA warp drive story: Not sure which is less plausible, that it’s allowed by physics or that we could implement it if it were.

White’s group claims that they are on the verge to realize an experiment comparable to the Chicago Fermi’s experiment on the nuclear pile. This would imply that they have overcome all the difficulties seen so far in this kind of studies and are able to provide a working realization of the effect. You can find a paper by White here and is worth reading. They can controvert any skepticism by a sound experimental proof.

My view is always the same: As a physicist I have a blind faith on experimental facts and I would like to see accomplished one of my lifetime dreams arisen with that small step by Armstrong on the Moon. NASA is never a disappointment.

Stefano Finazzi, Stefano Liberati, & Carlos Barceló (2009). Semiclassical instability of dynamical warp drives PHYSICAL REVIEW D 79, 124017 (2009) arXiv: 0904.0141v2

Miguel Alcubierre (2000). The warp drive: hyper-fast travel within general relativity Class.Quant.Grav.11:L73-L77,1994 arXiv: gr-qc/0009013v1


The man passed away, the legend will always survive

26/08/2012

Neil Armstrong passed away yesterday (see here and here). He was the first man to put his feet on the Moon. He started all my dreams when I was just nine and that July’s night I was staring at his extraordinary enterprise together with Buzz Aldrin (see here) and Michael Collins on the Apollo 11. Now, I am moved to tears by this but my dreams are still there and his legend will always survive. Thank you very much, Neil!


Curiosity touched down successfully!

06/08/2012

I was excited this morning while I was looking at the last minutes of flight of Curiosity there at JPL. This remembered when I was nine and, with my father, I looked at man on the moon.  This time I was with my sons and we shared happiness with all the people that worked hard for another great success.  Keep up this great job!


QCD 12 and Higgs’ tears

08/07/2012

I have spent this week in Montpellier being a participant to QCD 12, a biannual conference organized by Stephan Narison. It is the third time that I go to Montpellier for this conference and there are always very good reasons for being there. Essentially, the quality of physics and beauty of the city are already worthwhile and sound arguments but also the excellent organization  by the host and the attention reserved to the guests are not the least. This year we have had the blessing of a historical event in physics: The discovery at CERN of the Higgs particle. Stephan organized the event with the webcast from CERN the first two hours on Wednesday and so we heard directly from Gianotti and Incandela what they were seeing at LHC.  The conference is a fair interplay between experiment and theory in a field, QCD, that is very active and with several important open problems. Maybe, we would like to emphasize that is QCD that gives mass to everyday things, and not the Higgs boson, and this means that the solution of the mass gap problem and the developing of proper methods to manage non-perturbative regimes are essential to the understanding of our common perception of reality. Indeed, Roberto Mussa of University of Turin remembered us an argument that  makes Higgs boson essential to everyday life: The stability of matter. Without the Higgs boson quarks would have equal masses and so, proton would decay into neutron. The difference in mass between u and d quarks is essential and this originates from Higgs boson.

In this conference several questions emerged that were absolutely exciting. Hadron spectrum is not so well understood both in the low and high part. There is a plenty of experimental results claiming for an explanation. Labs keep on finding resonances that have not an immediate explanation and make hard the life of us theoreticians. One should compare the situation with the case of electromagnetic interactions where a Rydberg formula was promptly found and understanding of bound states is now quite straightforward. For hadrons we have hard times already to catch what the structure of a resonance is. These difficulties arise from the missing of technique to manage non-perturbative problems in a way similar to the weak coupling limit. Indeed, on Wednesday, some approaches were given to manage this kind of situation and, besides my talk, the most common technique is AdS/QCD starting from Maldacena conjecture. This was also the argument of Stefano Nicotri and Floriana Giannuzzi. They are students of Pietro Colangelo and contributed to the organization of Lecce conference. I have spent a lot of good time with them and so we exchanged a lot of opinions about this matter. On this line, Hans Günter Dosch put all us down showing that the situation with this approach is not so fine. Simply, it appears like a proper model for the mapping between gravity and QCD is lacking yet but, of course, people is actively pursuing it.

A talk that gave me some interesting views was the one by Kenichi Konishi. He pointed out how the confinement can emerge looking at the behavior of the supersymmetric counterpart of Yang-Mills theory. He pointed out the problems with the idea of monopoles, already discussed by Kei-Ichi Kondo at Lecce. And you bet, when one looks at SYM one recover the condensation of a scalar field! Konishi works at University of Pisa where teaches quantum mechanics.

On the line of non-perturbative approaches were the talks by Matteo Giordano and Enrico Meggiolaro. They are trying to re-derive from first principles the Froissart bound. This is a bound on hadronic scattering that can be obtained just using unitarity and dispersion relations. This bound depends crucially on the mass gap of the theory and so, again, we are coping with all the problems given above. Meggiolaro showed that, using lattice computations, the limit can be recovered with the proper constant while Matteo is approaching this problem using AdS/QCD. With Matteo we meet again in Montpellier after four years. We remembered each other immediately and drunk a last beer before leaving on Friday night after the social dinner, with Montpellier streets full of people and pleasant noise.

A talk that I followed with a lot of interest was the one given by Pietro Falgari. He is working on the use of perturbation theory at high-energy in QCD to evaluate the production rate of pairs of top quarks. Even if in this limit perturbation theory can be applied in QCD, they have difficulties mostly related to resum a quite singular series with logarithmic contributions. So, also when perturbation theory applies, QCD does not save us from problems. With Pietro I have spent a lot of time in Montpellier and we left the city together on Saturday with the same flight.

An interesting talk was the one given by Eduardo de Rafael about the determination of the g factor of the muon. This is a truly relevant matter as this measurement can give a clue to new physics. But, as de Rafael pointed out, the critical point is the determination of the hadronic contribution. Presently, there is a 3.6 sigmas discrepancy between the theoretical computed value and the measured one. We cannot be confident that the evaluation of the hadronic part is not correctly accomplished.

Last but not least, the current work of Narison on heavy flavors with sum rules. This approach is now fairly well stable and provides results also better than other non-perturbative techniques. This has been shown in the talk by his collaborator Albuquerque from Sao Paolo. Of course, results like these should be a reference for experiments much in the same way are others as lattice computations. Finally, I would like to cite the talk by Robert Kaminski. He presented the fine work done in collaboration with R. Garcia-Martin J. R. Pelaez, J. Ruiz de Elvira aimed to a precise determination of the properties of f0(600) and f0(980). Their results are striking indeed as they fix very precise values to the mass and width of these resonances, in close agreement with preceding works. It is my personal conviction that a serious theoretical approach should be derive both the mass and the width of these resonances deriving at the same time their structure.

Wednesday was the great day. There was a lot of expectation and the great discovery was in the air predated by a lot of rumors here and there. Our organizers did a great work both providing the webcast from CERN and with a pair of talks on Friday from people of CMS and ATLAS. There has been a religious silence during the talks of Incandela and Gianotti just interrupted by applause at the announcements of the 5 sigmas discovery by the two groups. Following this, we discussed a lot about this matter and, besides it is very standard model-like this particle at the moment, we all were very cautious to claim supersymmetry dead. Rather we would like to know more about the rates in the various channels, results to be known in the near future in order to answer the question put forward by CERN director Rolf-Dieter Heuer: Which one? A girl at my conference asked for other four Higgs and we all know why. Talking with a colleague at ATLAS here in Montpellier, he told me a quite interesting figure for the WW channel but I will not disclose it. Work is in progress yet and data are really too fresh to be discussed. It is a matter of few months and we will know better about the nature of this new particle. Meanwhile, I would like to remember Higgs’ tears after the great announcement and the handshaking with Fabiola Gianotti, after the splendid talk by her, confirming the expectation of almost fifty years of waiting with hopes often not coming up. It is an achievement that very few scientists can claim in their lifetime. The same must apply identically to Englert, Brout, Guralnik, Hagen, and Kibble.

On Friday, the program was concluded by the talks of people from CERN, on behalf of ATLAS and CMS Collaborations. Pushpa Bhat from Fermilab talked on behalf of CMS Experiment while Robert Harrington from Particle Physics Experimental Group of University of Edinburgh talked on behalf of ATLAS Experiment. This was a great conclusion for the Conference, hearing directly from people at CERN, about the great achievement announced on Wednesday.

As a final remark, I would like to thank all people with whom I shared beautiful moments at this conference. Besides people I have already mentioned, I would like to thank Stefano Venditti, Antonio Cassese, Andrey Tayduganov, Federico Mescia, Benjamin Obherof. A great thank goes to Stephan Narison for giving me the chance to give a talk here, for giving me the chance to be chairman for the first time, and for the excellent and really enjoying organization in a beautiful city. See you again!

Update: Talks can be downloaded here.


Higgs particle finally found!

04/07/2012

After a two hours seminar, both CMS and ATLAS spokepersons confirmed a 5 sigmas discovery of a new particle that is consistent with the Higgs particle of the Standard Model. The mass is in agreement with previous clues on last December seminar from CERN: About 125 GeV for both experiments.

Congratulations for the great discovery to all people participating to this succesful effort!


Ereditato resigns

30/03/2012

Antonio Ereditato resigns as OPERA spokeperson following the failure of the supeluminal neutrino affair. He will be part of history but through a harsh lesson we all learned. He remembers me another character of history of physics in a similar situation, Prosper-René Blondlot and N ray affair. So, science is a self-correcting process but some of the bad consequences could be easily avoided. It is indeed difficult in our epoch to hide information as we have a lot more media and channels where this can escape. But prudence is always the best choice. Waiting some other weeks before calling media would have saved Ereditato’s head.


Follow

Get every new post delivered to your Inbox.

Join 67 other followers

%d bloggers like this: