An useful hint

Dietmar Ebert is a retired professor of Humboldt University in Berlin. He did relevant work in QCD and particle physics. I have come upon a paper of him at arxiv about the question of bosonization. In a paper of mine I showed how a Nambu-Jona-Lasinio (NJL) model can be derived from QCD using recent results about gluon propagator that is the corner stone of all this construction. In order to make contact with the mesonic spectrum of QCD one needs to manage in some way quark fermionic fields of NJL model to recover bosonic degrees of freedom. In Ebert’s paper this is done through Hubbard-Stratonovich transformation that is a widely known tool to condensed matter theorists. This is a key point to prove that our recent derivation of the width of the sigma resonance given here using a Fermi’s intuition is indeed correct. Ebert obtains by a NJL-model the following bosonic Hamiltonian

L_{int}=g_{\sigma\pi\pi}\sigma(\sigma^2+\pi^2)+g_{4\pi}(\sigma^2+\pi^2)^2

being

g_{\sigma\pi\pi}=\frac{m}{\sqrt{N_c I_2}}

and

g_{4\pi}=\frac{1}{8N_c I_2}

being N_c the number of colors,

m=m_0+i8mG_{NJL}\int^{\Lambda}\frac{d^4k}{(2\pi)^4}\frac{1}{k^2-m^2}

quark constituent mass and m_0 the quark mass assumed to be equal for u and d, and finally

I_2=-i\int^{\Lambda}\frac{d^4k}{(2\pi)^4}\frac{1}{(k^2-m^2)^2}.

In order to make contact with QCD, as we have shown one has

G_{NJL}=3.761402959\frac{g^2}{\sigma}

being g the coupling constant and \sqrt{\sigma}=410\pm 20 \ MeV the square root of the string tension.

Ebert’s Lagrangian gives us exactly the term we derived with Fermi’s insight plus other terms implying also the one to compute f0(980) decay rate 2g_{4\pi}\sigma^2\pi^2. So, as it is well-known, a good idea repeats itself at different levels in the description of Nature. I would call this the “gluonic sector” of QCD. I hope to put down a paper about in the next days.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: