## Gradient expansions, strong perturbations and classicality

It is a common view that when in an equation appears a very large term we cannot use any perturbation approach at all. This is a quite common prejudice and forced physicists, for a lot of years, to invent exotic approaches with very few luck to unveil physics behind equations. The reason for this relies on a simple trick generally overlooked by mathematicians and physicists and here is my luck. This idea can be easily exposed for the Schroedinger equation. So, let us consider the case $(H_0+\lambda V)|\psi\rangle=i\hbar\frac{\partial|\psi\rangle}{\partial t}$

with $\lambda\rightarrow\infty$. This is a very unlucky case both for a physicist and a mathematician as the only sure approach that come to our rescue is a computer program with all the difficulties this implies. Of course, it would be very nice if we could find a solution in the form of an asymptotic series like $|\psi\rangle=|\psi_0\rangle+\frac{1}{\lambda}|\psi_1\rangle+\frac{1}{\lambda^2}|\psi_2\rangle+\ldots$

but we know quite well that if we insert such a solution into the Schroedinger equation we get meaningless results. But there is a very smart trick that can get us out of this dark and can produce the required result. I have exposed this since 1992 on Physical Review A (see here) and this paper was not taken too seriously by the community so that I had time enough to be able to apply this idea to all fields of physics. The paper producing the turning point has been published on Physical Review A (thank you very much, Bernd Crasemann!). You can find it here and here. The point is that when you have a strong perturbation, an expansion is not enough. You also need a rescaling in time like $\tau=\lambda t$. If you do this and insert the above expansion into the original Schroedinger equation, this time you will get meaningful results: A dual Dyson series that, being now the perturbation independent of time, becomes a well-known gradient expansion: Wigner-Kirkwood series. But this series is a semiclassical one and you get the striking result that a strongly perturbed quantum system is a semiclassical system! So, if you want to change a quantum system into a classical one just perturb it strongly. This is something that happens when one does a measurement in quantum mechanics using just electromagnetic fields that are the only means we know to accomplish such a task.

This result about strong perturbations and semiclassicality has been published on a long time honored journal: Proceedings of the Royal Society A (see here and here). I am pleased of this also because of my estimation for Michael Berry, the Editor. I have met him at a Garda lake’s Conference some years ago and I have listened a beautiful talk by him about the appearance of a classical world out of the quantum conundrum. I remember he asked me how to connect to internet from the Conference site but there there was just a not so cheap machine from Telecom Italia and then my help was quite limited.

So, I just removed a prejudice and was lucky enough to give sound examples in all branches of physics. Sometime, looking in some dusty corners of physics and mathematics can be quite rewarding!

This site uses Akismet to reduce spam. Learn how your comment data is processed.