Phases of a 2D electron gas

A lot of devices today are conceived to work with a 2D electron gas (2DEG). A typical and widespread application is a MOSFET where this gas makes a conducting channel with a neutralizing background of positive ions. A 2DEG is an essential part of any nanoscale device (see my preceding post) and we know that a lot of unexpected effects are seen when the temperature is lowered to few nK°, so very near absolute zero, where a fully quantum behavior should set in but something weird generally happens.

To understand these quite strange behaviors becomes mandatory to have an idea about what happens to a 2DEG changing its temperature. So, there are a lot of studies about. One of these lines of research relies on Montecarlo computations with a fixed number of electrons and taking a proper interaction between them. This people can then obtain a phase diagram of 2DEG and these findings are really interesting. A phase diagram of the 2DEG has a Wigner crystal phase at lower densities while , at higher densities the gas, in its ground state, behaves paramagnetically. This paramagnetic phase is unstable, lowering the density, and the gas enters a ferromagnetic phase! This is quite interesting as ferromagnetic states can produce such excitations as magnons that can make quantum behavior to lose its coherence. I have discussed this here (published on PRB) and here. For supporting these papers I have found a beautiful work of Giovanni Bachelet and his group here (published on PRL) where evidence is found for a ferromagnetic phase. Currently, Giovanni Bachelet has been elected at Italian Parliament for Partito Democratico (Democratic Party). You can find some biographical notes about him (in Italian) here.

The open question about these phases is to know how stable they are. A recent paper on PRL by Drummond and Needs, using the aforementioned Montecarlo methods, try to answer this question (see here).  The main conclusion they arrive is that the ferromagnetic phase does not appear to be stable while they do not find evidence for more exotic phases even if they cannot rule them out. Of course, they confirm all the preceding findings about the very existence of the known phases of 2DEG we mentioned  that since now are all well acquired. Some experimental hint exists for the ferromagnetic phase (see here) but this is not conclusive evidence.

This kind of research is really exciting being at the foundations of our understanding of behavior of matter in exotical physical situations. In the near future we will see how the complete picture will appear.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: