A first paper on square root of a Brownian motion and quantum mechanics gets published!

Following my series of posts on the link between the square root of a stochastic process and quantum mechanics (see here, here, here, here, here), that I proved to exist both theoretically and experimentally, I am pleased to let you know that the first paper of my collaboration with Alfonso Farina and Matteo Sedehi was finally accepted in Signal, Image and Video Processing. This paper contains the proof of what I named the “Farina-Frasca-Sedehi proposition” in my paper that claims that for a well localized free particle there exists a map between the wave function and the square root of binomial coefficients. This finally links the Pascal-Tartaglia triangle, given through binomial coefficients, to quantum mechanics and closes a question originally open by Farina and collaborators on the same journal (see here). My theorem about the square root of a stochastic process also appears in this article but without a proof.

Marco Frasca (2012). Quantum mechanics is the square root of a stochastic process arXiv arXiv: 1201.5091v2

Farina, A., Giompapa, S., Graziano, A., Liburdi, A., Ravanelli, M., & Zirilli, F. (2011). Tartaglia-Pascal’s triangle: a historical perspective with applications Signal, Image and Video Processing DOI: 10.1007/s11760-011-0228-6

[…] assuming that at the square root of a Wiener process can be attached a meaning (see here and here). I was able to generate it through a numerical code. A square root of a number can always be […]

[…] assuming that at the square root of a Wiener process can be attached a meaning (see here and here). I was able to generate it through a numerical code. A square root of a number can always be […]