With these beautiful words starts a recollection paper by the founder of arXiv, Paul Ginsparg. This is worth the reading as this history spans a number of years exactly overlapping the computer revolution that definitely changed our lives. What Paul also changed through these new information tools was the way researchers should approach scientific communication. It is a revolution that is not stopped yet and all the journals I submit my papers have a link to arXiv for direct uploading of the preprint. This change has had also a great impact on the way these same journals should present to authors, readers and referees as well at their website.

For my readers I would like just to point out how relevant was all this for our community with the Grisha Perelman’s case. I think all of you are well aware that Perelman never published his papers on a journal: You can find both of them on arXiv. Those preprints paid as much as a Fields medal and a Millenium prize. Not bad I should say for a couple of unpublished papers. Indeed, it is common matter to have a paper largely discussed well before its publication and often a preprint becomes a case in the community without not even seeing the light of a publication. It is quite common for us doing research to console colleagues complaining about the harsh peer-review procedure by saying that today exists arXiv and that is enough to make your work widely known.

I was a submitter since 1994, almost at the very start, and I wish that the line of successes of this idea will never end.

Finally, to prove how useful is arXiv for our community, I would like to point out to you, for your summer readings a couple of papers. The first one is this from R. Aouane, V. Bornyakov, E.-M. Ilgenfritz, V. Mitrjushkin, M. Müller-Preussker, A. Sternbeck. My readers should know that these researchers always do a fine work and get important results on their lattice computations. The same happens here where they study the gluon and ghost propagators at finite temperature in the Landau gauge. Their conclusion about Gribov copies is really striking, comforting my general view on this matter (see here), that Gribov copies are not essential not even when one rises the temperature. Besides, they discuss the question of a proper order parameter to identify the phase transition that we know exists in this case.

The next paper is authored by Tereza Mendes, Axel Maas and Stefan Olejnik (see here). The idea in this work is to consider a gauge, the -gauge, with a free parameter interpolating between different gauges to see the smoothness of the transition and the way of change of the propagators. They reach a volume of 70^4 but Tereza told me that the errors are too large yet for a neat comparison with smaller volumes. In any case, this is a route to be pursued and I am curious about the way the interpolated propagator behaves at the deep infrared with larger lattices.

Discussions on Higgs identification are well alive yet ( you can see here). take a look and enjoy!

Paul Ginsparg (2011). It was twenty years ago today … arXiv arXiv: 1108.2700v1

R. Aouane, V. Bornyakov, E. -M. Ilgenfritz, V. Mitrjushkin, M. Müller-Preussker, & A. Sternbeck (2011). Landau gauge gluon and ghost propagators at finite temperature from

quenched lattice QCD arXiv arXiv: 1108.1735v1

Axel Maas, Tereza Mendes, & Stefan Olejnik (2011). Yang-Mills Theory in lambda-Gauges arXiv arXiv: 1108.2621v1