DICE 2014

21/09/2014

ResearchBlogging.org

I have spent this week in Castiglioncello participating to the Conference DICE 2014. This Conference is organized with a cadence of two years with the main efforts due to Thomas Elze.

Castello Pasquini a Castiglioncello sede di DICE 2014

Castello Pasquini at Castiglioncello  (DICE 2014)

I have been a participant to the 2006 edition where I gave a talk about decoherence and thermodynamic limit (see here and here). This is one of the main conferences where foundational questions can be discussed with the intervention of some of the major physicists. This year there have been 5 keynote lectures from famous researchers. The opening lecture was held by Tom Kibble, one of the founding fathers of the Higgs mechanism. I met him at the registration desk and I have had the luck of a handshake and a few words with him. It was a recollection of the epic of the Standard Model. The second notable lecturer was Mario Rasetti. Rasetti is working on the question of big data that is, the huge number of information that is currently exchanged on the web having the property to be difficult to be managed and not only for a matter of quantity. What Rasetti and his group showed is that topological field theory yields striking results when applied to such a case. An application to NMRI for the brain exemplified this in a blatant manner.

The third day there were the lectures by Avshalom Elitzur and Alain Connes, the Fields medallist. Elitzur is widely known for the concept of weak measurement that is a key idea of quantum optics. Connes presented his recent introduction of the quanta of geometry that should make happy loop quantum gravity researchers.Alain Connes at DICE2014 You can find the main concepts here. Connes explained how the question of the mass of the Higgs got fixed and said that, since his proposal for the geometry of the Standard Model, he was able to overcome all the setbacks that appeared on the way. This was just another one. From my side, his approach appears really interesting as the Brownian motion I introduced in quantum mechanics could be understood through the quanta of volumes that Connes and collaborators uncovered.

Gerard ‘t Hooft talked on Thursday. The question he exposed was about cellular automaton and quantum mechanics (see here). It is several years that ‘t Hoof t is looking for a classical substrate to quantum mechanics and this was also the point of other speakers at the Conference. Indeed, he has had some clashes with people working on quantum computation as ‘t Hooft, following his views, is somewhat sceptical about it.'t Hooft at DICE2014 I intervened on this question based on the theorem of Lieb and Simon, generally overlooked in such discussions, defending ‘t Hoof ideas and so, generating some fuss (see here and the discussion I have had with Peter Shor and Aram Harrow). Indeed, we finally stipulated that some configurations can evade Lieb and Simon theorem granting a quantum behaviour at macroscopic level.

This is my talk at DICE 2014 and was given the same day as that of  ‘t Hooft (he was there listening)My talk at DICE 2014. I was able to prove the existence of fractional powers of Brownian motion and presented new results with the derivation of the Dirac equation from a stochastic process.

The Conference was excellent and I really enjoyed it. I have to thank the organizers for the beautiful atmosphere and the really pleasant stay with a full immersion in wonderful science. All the speakers yielded stimulating and enjoyable talks. For my side, I will keep on working on foundational questions and look forward for the next edition.

Marco Frasca (2006). Thermodynamic Limit and Decoherence: Rigorous Results Journal of Physics: Conference Series 67 (2007) 012026 arXiv: quant-ph/0611024v1

Ali H. Chamseddine, Alain Connes, & Viatcheslav Mukhanov (2014). Quanta of Geometry arXiv arXiv: 1409.2471v3

Gerard ‘t Hooft (2014). The Cellular Automaton Interpretation of Quantum Mechanics. A View on the Quantum Nature of our Universe, Compulsory or Impossible? arXiv arXiv: 1405.1548v2


What’s up with 2d Yang-Mills theory?

24/12/2010

Being near Christmas I send my wishes to all my friends around the World. Most of them are physicists like Attilio Cucchieri that I cited a lot in this blog with his wife Tereza Mendes for their beautiful works on Yang-Mills propagators. Attilio asked to me again about the behavior of 2d Yang-Mills propagators and my approach to the theory. As you know, lattice computations due to Axel Maas (see here) showed without doubt that here, differently from the higher dimensional case, the scaling solution appears. This is an important matter as ‘t Hooft showed in 1974 (see here) that, in the light cone gauge, Yang-Mills theory has no dynamics. Indeed, the Lagrangian takes a very simple form

{\cal L}=-\frac{1}{2}{\rm Tr}(\partial_- A_+)^2

and the nonlinear part is zero due to the fact that the field has just two Lorentzian indexes. Please, note that here A_\pm=\frac{1}{\sqrt{2}}(A_1\pm A_0) and  x_\pm=\frac{1}{\sqrt{2}}(x_1\pm x_0). Now, you can choose the time variable as you like and if you take this to be x_+ you see that there are no dynamical equations left for the gluon field! You are not able to do this in higher dimensions where the dynamics is not trivial and the field develops a mass gap already classically. Two-dimensional QCD is not trivial as there remains a static (nonlocal) Coulomb interaction between quarks. You can read the details in ‘t Hooft’s paper.

Now, in my two key papers (here and here) I proved that, at the classical level the Yang-Mills field maps on a quartic massless scalar field in the limit of the coupling going to infinity. So, I am able to build a quantum field theory for the Yang-Mills equations in this limit thanks to this theorem. But what happens in two dimensions? The scalar field Lagrangian in the light-cone coordinate becomes

{\cal L}=-\partial_+\phi\partial_-\phi-\lambda\phi^4

and you can see that, whatever is your choice for the time variable, this field has always a dynamics. In 2d I am not able to map the two fields and, if I choose a different gauge for the Yang-Mills field, I can find propagators that are no more bounded to be massive or Yukawa-like. Indeed, the scaling solution is obtained. This is a bad news for supporters of this solution but this is plain mathematics. It is interesting to note that the scalar field appears to have nontrivial massive solutions also in this case. No mass gap is expected for the Yang-Mills field instead.

Thank you a lot Attilio for pointing me out this question!

Merry Xmas to everybody!


%d bloggers like this: