I am back after the announcement by CERN of the restart of LHC. On May this year we will have also the first collisions. This is great news and we hope for the best and the best here is just the breaking of the Standard Model.

The Higgs in the title is not Professor Higgs but rather the particle carrying his name. The question is a recurring one since the first hints of existence made their appearance at the LHC. The point I would like to make is that the equations of the theory are always solved perturbatively, even if exact solutions exist that provide a mass also if the theory is massless or has a mass term with a wrong sign (Higgs model). All you need is a finite self-interaction term in the equation. So, you will have bad times to recover such exact solutions with perturbation techniques and one keeps on living in the ignorance. If you would like to see the technicalities involved just take a cursory look at Dispersive Wiki.

What is the point? The matter is rather simple. The classical theory has exact massive solutions for the potential in the form and this is a general result implying that **a scalar self-interacting field gets always a mass** (see here and here). Are we entitled to ignore this? Of course no. But today exact solutions have lost their charm and we can get along with them.

For the quantum field theory side what could we say? The theory can be quantized starting with these solutions and I have shown that one gets in this way that these massive particles have higher excited states. These are not bound states (maybe could be correctly interpreted in string theory or in a proper technicolor formulation after bosonization) but rather internal degrees of freedom. It is always the same Higgs particle but with the capability to live in higher excited states. These states are very difficult to observe because higher excited states are also highly depressed and even more hard to see. In the first LHC run they could not be seen for sure. In a sense, it is like Higgs is alone but with the capability to get fatter and present himself in an infinite number of different ways. This is exactly the same for the formulation of the scalar field as originally proposed by Higgs, Englert, Brout, Kibble, Guralnik and Hagen. We just note that this formulation has the advantage to be exactly what one knows from second order phase transitions used by Anderson in his non-relativistic proposal of this same mechanism. The existence of these states appears inescapable whatever is your best choice for the quartic potential of the scalar field.

It is interesting to note that this is also true for the Yang-Mills field theory. The classical equations of this theory display similar solutions that are massive (see here) and whatever is the way you develop your quantum filed theory with such solutions the mass gap is there. The theory entails the existence of massive excitations exactly as the scalar field does. This have been seen in lattice computations (see here). Can we ignore them? Of course no but exact solutions are not our best choice as said above even if we will have hard time to recover them with perturbation theory. Better to wait.

Marco Frasca (2009). Exact solutions of classical scalar field equations J.Nonlin.Math.Phys.18:291-297,2011 arXiv: 0907.4053v2

Marco Frasca (2013). Scalar field theory in the strong self-interaction limit Eur. Phys. J. C (2014) 74:2929 arXiv: 1306.6530v5

Marco Frasca (2014). Exact solutions for classical Yang-Mills fields arXiv arXiv: 1409.2351v2

Biagio Lucini, & Marco Panero (2012). SU(N) gauge theories at large N Physics Reports 526 (2013) 93-163 arXiv: 1210.4997v2