Well below 1%



When a theory is too hard to solve people try to consider lower dimensional cases. This also happened for Yang-Mills theory. The four dimensional case is notoriously difficult to manage due to the large coupling and the three dimensional case has been treated both theoretically and by lattice computations. In this latter case, the ground state energy of the theory is known very precisely (see here). So, a sound theoretical approach from first principles should be able to get that number at the same level of precision. We know that this is the situation for Standard Model with respect to some experimental results but a pure Yang-Mills theory has not been seen in nature and we have to content ourselves with computer data. The reason is that a Yang-Mills theory is realized in nature just in interaction with other kind of fields being these scalars, fermions or vector-like.

In these days, I have received the news that my paper on three dimensional Yang-Mills theory has been accepted for publication in the European Physical Journal C. Here is tha table for the ground state for SU(N) at different values of N compared to lattice data

N Lattice     Theoretical Error

2 4.7367(55) 4.744262871 0.16%

3 4.3683(73) 4.357883714 0.2%

4 4.242(9)     4.243397712 0.03%

4.116(6)    4.108652166 0.18%

These results are strikingly good and the agreement is well below 1%. This in turn implies that the underlying theoretical derivation is sound. Besides, the approach proves to be successful both also in four dimensions (see here). My hope is that this means the beginning of the era of high precision theoretical computations in strong interactions.

Andreas Athenodorou, & Michael Teper (2017). SU(N) gauge theories in 2+1 dimensions: glueball spectra and k-string tensions J. High Energ. Phys. (2017) 2017: 15 arXiv: 1609.03873v1

Marco Frasca (2016). Confinement in a three-dimensional Yang-Mills theory arXiv arXiv: 1611.08182v2

Marco Frasca (2015). Quantum Yang-Mills field theory Eur. Phys. J. Plus (2017) 132: 38 arXiv: 1509.05292v2

Nailing down the Yang-Mills problem


ResearchBlogging.org Millennium problems represent a major challenge for physicists and mathematicians. So far, the only one that has been solved was the Poincaré conjecture (now a theorem) by Grisha Perelman. For people working in strong interactions and quantum chromodynamics, the most interesting of such problems is the Yang-Mills mass gap and existence problem. The solutions of this problem would imply a lot of consequences in physics and one of the most important of these is a deep understanding of confinement of quarks inside hadrons. So far, there seems to be no solution to it but things do not stay exactly in this way. A significant number of researchers has performed lattice computations to obtain the propagators of the theory in the full range of energy from infrared to ultraviolet providing us a deep understanding of what is going on here (see Yang-Mills article on Wikipedia). The propagators to be considered are those for  the gluon and the ghost. There has been a significant effort from theoretical physicists in the last twenty years to answer this question. It is not so widely known in the community but it should because the work of this people could be the starting point for a great innovation in physics. In these days, on arxiv a paper by Axel Maas gives a great recount of the situation of these lattice computations (see here). Axel has been an important contributor to this research area and the current understanding of the behavior of the Yang-Mills theory in two dimensions owes a lot to him. In this paper, Axel presents his computations on large volumes for Yang-Mills theory on the lattice in 2, 3 and 4 dimensions in the SU(2) case. These computations are generally performed in the Landau gauge (propagators are gauge dependent quantities) being the most favorable for them. In four dimensions the lattice is (6\ fm)^4, not the largest but surely enough for the aims of the paper. Of course, no surprise comes out with respect what people found starting from 2007. The scenario is well settled and is this:

  1. The gluon propagator in 3 and 4 dimensions dos not go to zero with momenta but is just finite. In 3 dimensions has a maximum in the infrared reaching its finite value at 0  from below. No such maximum is seen in 4 dimensions. In 2 dimensions the gluon propagator goes to zero with momenta.
  2. The ghost propagator behaves like the one of a free massless particle as the momenta are lowered. This is the dominant behavior in 3 and 4 dimensions. In 2 dimensions the ghost propagator is enhanced and goes to infinity faster than in 3 and 4 dimensions.
  3. The running coupling in 3 and 4 dimensions is seen to reach zero as the momenta go to zero, reach a maximum at intermediate energies and goes asymptotically to 0 as momenta go to infinity (asymptotic freedom).

Here follows the figure for the gluon propagator Gluon Propagators

and for the running coupling


There is some concern for people about the running coupling. There is a recurring prejudice in Yang-Mills theory, without any support both theoretical or experimental, that the theory should be not trivial in the infrared. So, the running coupling should not go to zero lowering momenta but reach a finite non-zero value. Of course, a pure Yang-Mills theory in nature does not exist and it is very difficult to get an understanding here. But, in 2 and 3 dimensions, the point is that the gluon propagator is very similar to a free one, the ghost propagator is certainly a free one and then, using the duck test: If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck, the theory is really trivial also in the infrared limit. Currently, there are two people in the World that have recognized a duck here:  Axel Weber (see here and here) using renormalization group and me (see here, here and here). Now, claiming to see a duck where all others are pretending to tell a dinosaur does not make you the most popular guy  in the district. But so it goes.

These lattice computations are an important cornerstone in the search for the behavior of a Yang-Mills theory. Whoever aims to present to the World his petty theory for the solution of the Millennium prize must comply with these results showing that his theory is able to reproduce them. Otherwise what he has is just rubbish.

What appears in the sight is also the proof of existence of the theory. Having two trivial fixed points, the theory is Gaussian in these limits exactly as the scalar field theory. A Gaussian theory is the simplest example we know of a quantum field theory that is proven to exist. Could one recover the missing part between the two trivial fixed points as also happens for the scalar theory? In the end, it is possible that a Yang-Mills theory is just the vectorial counterpart of the well-known scalar field, the workhorse of all the scholars in quantum field theory.

Axel Maas (2014). Some more details of minimal-Landau-gauge Yang-Mills propagators arXiv arXiv: 1402.5050v1

Axel Weber (2012). Epsilon expansion for infrared Yang-Mills theory in Landau gauge Phys. Rev. D 85, 125005 arXiv: 1112.1157v2

Axel Weber (2012). The infrared fixed point of Landau gauge Yang-Mills theory arXiv arXiv: 1211.1473v1

Marco Frasca (2007). Infrared Gluon and Ghost Propagators Phys.Lett.B670:73-77,2008 arXiv: 0709.2042v6

Marco Frasca (2009). Mapping a Massless Scalar Field Theory on a Yang-Mills Theory: Classical
Case Mod. Phys. Lett. A 24, 2425-2432 (2009) arXiv: 0903.2357v4

Marco Frasca (2010). Mapping theorem and Green functions in Yang-Mills theory PoS FacesQCD:039,2010 arXiv: 1011.3643v3

Large-N gauge theories on the lattice



Today I have found on arXiv a very nice review about large-N gauge theories on the lattice (see here). The authors, Biagio Lucini and Marco Panero, are well-known experts on lattice gauge theories being this their main area of investigation. This review, to appear on Physics Report, gives a nice introduction to this approach to manage non-perturbative regimes in gauge theories. This is essential to understand the behavior of QCD, both at zero and finite temperatures, to catch the behavior of bound states commonly observed. Besides this, the question of confinement is an open problem yet. Indeed, a theoretical understanding is lacking and lattice computations, especially in the very simplifying limit of large number of colors N as devised in the ’70s by ‘t Hooft, can make the scenario clearer favoring a better analysis.

What is seen is that confinement is fully preserved, as one gets an exact linear increasing potential in the limit of N going to infinity, and also higher order corrections are obtained diminishing as N increases. They are able to estimate the string tension obtaining (Fig. 7 in their paper):

\centering{\frac{\Lambda_{\bar{MS}}}{\sigma^\frac{1}{2}}\approx a+\frac{b}{N^2}}.

This is a reference result for whoever aims to get a solution to the mass gap problem for a Yang-Mills theory as the string tension must be an output of such a result. The interquark potential has the form

m(L)=\sigma L-\frac{\pi}{3L}+\ldots

This ansatz agrees with numerical data to distances 3/\sqrt{\sigma}! Two other fundamental results these authors cite for the four dimensional case is the glueball spectrum:


Again, these are reference values for the mass gap problem in a Yang-Mills theory. As my readers know, I was able to get them out from my computations (see here). More recently, I have also obtained higher order corrections and the linear rising potential (see here) with the string tension in a closed form very similar to the three-dimensional case. Finally, they give the critical temperature for the breaking of chiral symmetry. The result is


This result is rather interesting because the constant is about \sqrt{3/\pi^2}. This result has been obtained initially by Norberto Scoccola and Daniel Gómez Dumm (see here) and confirmed by me (see here). This result pertains a finite temperature theory and a mass gap analysis of Yang-Mills theory should recover it but here the question is somewhat more complex. I would add to these lattice results also the studies of propagators for a pure Yang-Mills theory in the Landau gauge, both at zero and finite temperatures. The scenario has reached a really significant level of maturity and it is time that some of the theoretical proposals put forward so far compare with it. I have just cited some of these works but the literature is now becoming increasingly vast with other really meaningful techniques beside the cited one.

As usual, I conclude this post on such a nice paper with the hope that maybe time is come to increase the level of awareness of the community about the theoretical achievements on the question of the mass gap in quantum field theories.

Biagio Lucini, & Marco Panero (2012). SU(N) gauge theories at large N arXiv arXiv: 1210.4997v1

Marco Frasca (2008). Yang-Mills Propagators and QCD Nuclear Physics B (Proc. Suppl.) 186 (2009) 260-263 arXiv: 0807.4299v2

Marco Frasca (2011). Beyond one-gluon exchange in the infrared limit of Yang-Mills theory arXiv arXiv: 1110.2297v4

D. Gomez Dumm, & N. N. Scoccola (2004). Characteristics of the chiral phase transition in nonlocal quark models Phys.Rev. C72 (2005) 014909 arXiv: hep-ph/0410262v2

Marco Frasca (2011). Chiral symmetry in the low-energy limit of QCD at finite temperature Phys. Rev. C 84, 055208 (2011) arXiv: 1105.5274v4

%d bloggers like this: