Is Higgs alone?

14/03/2015

ResearchBlogging.org

I am back after the announcement by CERN of the restart of LHC. On May this year we will have also the first collisions. This is great news and we hope for the best and the best here is just the breaking of the Standard Model.

The Higgs in the title is not Professor Higgs but rather the particle carrying his name. The question is a recurring one since the first hints of existence made their appearance at the LHC. The point I would like to make is that the equations of the theory are always solved perturbatively, even if exact solutions exist that provide a mass also if the theory is massless or has a mass term with a wrong sign (Higgs model). All you need is a finite self-interaction term in the equation. So, you will have bad times to recover such exact solutions with perturbation techniques and one keeps on living in the ignorance. If you would like to see the technicalities involved just take a cursory look at Dispersive Wiki.

What is the point? The matter is rather simple. The classical theory has exact massive solutions for the potential in the form V(\phi)=a\phi^2+b\phi^4 and this is a general result implying that a scalar self-interacting field gets always a mass (see here and here). Are we entitled to ignore this? Of course no. But today exact solutions have lost their charm and we can get along with them.

For the quantum field theory side what could we say? The theory can be quantized starting with these solutions and I have shown that one gets in this way that these massive particles have higher excited states. These are not bound states (maybe could be correctly interpreted in string theory or in a proper technicolor formulation after bosonization) but rather internal degrees of freedom. It is always the same Higgs particle but with the capability to live in higher excited states. These states are very difficult to observe because higher excited states are also highly depressed and even more hard to see. In the first LHC run they could not be seen for sure. In a sense, it is like Higgs is alone but with the capability to get fatter and present himself in an infinite number of different ways. This is exactly the same for the formulation of the scalar field as originally proposed by Higgs, Englert, Brout, Kibble, Guralnik and Hagen. We just note that this formulation has the advantage to be exactly what one knows from second order phase transitions used by Anderson in his non-relativistic proposal of this same mechanism. The existence of these states appears inescapable whatever is your best choice for the quartic potential of the scalar field.

It is interesting to note that this is also true for the Yang-Mills field theory. The classical equations of this theory display similar solutions that are massive (see here) and whatever is the way you develop your quantum filed theory with such solutions the mass gap is there. The theory entails the existence of massive excitations exactly as the scalar field does. This have been seen in lattice computations (see here). Can we ignore them? Of course no but exact solutions are not our best choice as said above even if we will have hard time to recover them with perturbation theory. Better to wait.

Marco Frasca (2009). Exact solutions of classical scalar field equations J.Nonlin.Math.Phys.18:291-297,2011 arXiv: 0907.4053v2

Marco Frasca (2013). Scalar field theory in the strong self-interaction limit Eur. Phys. J. C (2014) 74:2929 arXiv: 1306.6530v5

Marco Frasca (2014). Exact solutions for classical Yang-Mills fields arXiv arXiv: 1409.2351v2

Biagio Lucini, & Marco Panero (2012). SU(N) gauge theories at large N Physics Reports 526 (2013) 93-163 arXiv: 1210.4997v2


Waiting for EPS HEP 2013: Some thoughts

13/07/2013

ResearchBlogging.org

On 18th July the first summer HEP Conference will start in Stockholm. We do not expect great announcements from CMS and ATLAS as most of the main results from 2011-2012 data were just unraveled. The conclusions is that the particle announced on 4th July last year is a Higgs boson. It decays in all the modes foreseen by the Standard Model and important hints favor spin 0. No other resonance is seen at higher energies behaving this way. It is a single yet. There are a lot of reasons to be happy: We have likely seen the guilty for the breaking of the symmetry in the Standard Model and, absolutely for the first time, we have a fundamental particle behaving like a scalar. Both of these properties were looked upon for a long time and now this search is finally ended. On the bad side, no hint of new physics is seen anywhere and probably we will have to wait the restart of LHC on 2015. The long sought SUSY is at large yet.

Notwithstanding this hopeless situation for theoretical physics, my personal view is that there is something that gives important clues to great novelties that possibly will transmute into something of concrete at the restart. It is important to note that there seem to exist some differences between CMS and ATLAS  and this small disagreement can hide interesting news for the future. I cannot say if, due to the different conception of this two detectors, something different should be seen but is there. Anyway, they should agree in the end of the story and possibly this will happen in the near future.

The first essential point, that is often overlooked due to the overall figure, is the decay of the Higgs particle in a couple of W or Z. WW decay has a significantly large number of events and what CMS claims is indeed worth some deepening. This number is significantly below one. There is  a strange situation here because CMS gives 0.76\pm 0.21 and in the overall picture just write 0.68\pm 0.20 and so, I cannot say what is the right one. But they are consistent each other so not a real problem here. Similarly, ZZ decay yields 0.91^{+0.30}_{-0.24}. ATLAS, on the other side, yields for WW decay 0.99^{+0.31}_{-0.28} and for ZZ decay 1.43^{+0.40}_{-0.35}. Error bars are large yet and fluctuations can change these values. The interesting point here, but this has the value of a clue as these data agree with Standard Model at 2\sigma, is that the lower values for the WW decay can be an indication that this Higgs particle could be a conformal one. This would mean room for new physics. For ZZ decay apparently ATLAS seems to have a lower number of events as this figure is somewhat larger and the error bar as well. Anyway, a steady decrease has been seen for the WW decay as a larger dataset was considered. This decrease, if confirmed at the restart, would mean a major finding after the discovery of the Higgs particle. It should be said that ATLAS already published updated results with the full dataset (see here). I would like to emphasize that a conformal Standard Model can imply SUSY.

The second point is a bump found by CMS in the \gamma\gamma channel (see here).  This is what they see

CMS Another Higgs

but ATLAS sees nothing there and this is possibly a fluke. Anyway, this is about 3\sigma and so CMS reported about on a publication of them.

Finally, it is also possible that heavier Higgs particles could have depressed production rates and so are very rare. This also would be consistent with a conformal Standard Model. My personal view is that all hopes to see new physics at LHC are essentially untouched and maybe this delay to unveil it is just due to the unlucky start of the LHC on 2008. Meantime, we have to use the main virtue of a theoretical physicist: keeping calm and being patient.

Update: Here is the press release from CERN.

ATLAS Collaboration (2013). Measurements of Higgs boson production and couplings in diboson final
states with the ATLAS detector at the LHC arXiv arXiv: 1307.1427v1


Higgs and beyond

06/06/2013

I am writing these few lines while the conference “Higgs and beyond” is still going on at Tohoku University (Sendai) in Japan. Talks can be found here. Both ATLAS and CMS presented a lot of results about Higgs particle and the most relevant of them is the combination of the data from the two experiments (see here). I am following the excellent recount by Richard Ruiz on twitter (@bravelittlemuon) that also takes care of CERN’s blog. Some interesting point is that there seems to be a bump in Z\gamma channel that is persistent also in other channels. About decay rates, improvements confirm yet nearly Standard Model behavior of the Higgs particle but with the rates of WW and ZZ going down with a too large error bars yet (see my preceding post).  Hopes are that CMS and ATLAS could combine also these data reducing error bars. No other Standard Model heavy Higgs particle is seen. Both CMS and ATLAS are looking for evidence of more Higgs particles to no avail yet. Of course, my view is that these excitations should be searched with somewhat different rates from Standard Model expectations. In any case, Standard Model confirms itself as one of the most successful theories in the history of physics. As said by one of ATLAS speakers: “There is overwhelming evidence for a new boson; there is overwhelming evidence for nothing else.” Both experiments plan to complete the analysis of data at 8 TeV for the summer conferences. My personal expectations are that just improvements in the precision of the measurements of the decay rates could eventually give hints of new physics. To fulfill other hopes, we need LHC upgrade that will restart operations on the spring of 2015, hopefully.


Conformal Standard Model is consistent with the observed Higgs particle

12/04/2013

ResearchBlogging.org

Robert Garisto is an Editor of Physical Review Letters, the flagship journal of American Physical Society and the one with the highest impact factor in physics. I follow him on twitter (@RobertGaristo) and he points out interesting papers that appear in the journal he works in. This time I read the following

Tweets from Garisto

and turned immediately my attention to the linked paper: This one (if you have not a subscription you can find it at arxiv) by Tom Steele and Zhi-Wei Wang showing, with the technique of Padè approximants and an average method how to compute the exact mass of Higgs particle from Coleman-Weinberg mechanism arriving to estimate the ninth order contribution. This is so beacuse they need a stronger coupling with respect to the original Higgs mechanism. They reach an upper bound of 141 GeV for the mass and 0.352 for the self-coupling while they get the mass of 124 GeV for a self-coupling of 0.23. This shows unequivocally that the quadratic term, the one generating the hierarchy problem, is absolutely not needed and the Standard Model, in its conformal formulation, is able to predict the mass of the Higgs particle. Besides, the production rates are identical to the original model but differ for the production of Higgs pairs and this is where one could tell which way nature has chosen. This implies that, at the moment, one has no way to be sure this is the right solution but we have to wait till 2015 after LHC upgrade. So, once again, the precise measurements of these decay rates are essential to tell if we are coping with the original Higgs mechanism or something different or if we need two more years to answer this question. In any case, it is possible that Nobel committee has to wait yet before to take a decision. However, in the sixties that formulation was the only possible and any other solution would have been impossible to discover for the lack of knowledge. They did a great job even if we will prove a different mechanism at work as they provided credibility to the Standard Model and people could trust it.

Finally, I would like to note how the value of the coupling is consistent with my recent estimation where I get 0.36 for the self-interaction. I get different production rates and I would be just curious to see how pictures from ATLAS and CMS would change comparing differently from the Standard Model in order to claim no other Higgs-like particle is seen.

What we can conclude is that the conformal Standard Model is in even more better shape than before and just a single Higgs particle would be needed. An astonishing result.

Steele, T., & Wang, Z. (2013). Is Radiative Electroweak Symmetry Breaking Consistent with a 125 GeV Higgs Mass? Physical Review Letters, 110 (15) DOI: 10.1103/PhysRevLett.110.151601

Marco Frasca (2013). Revisiting the Higgs sector of the Standard Model arXiv arXiv: 1303.3158v1


Much closer to the Standard Model

18/03/2013

ResearchBlogging.org

Today, the daily from arxiv yields a contribution from John Ellis and Tevong You analyzing new data presented at Aspen and Moriond the last two weeks by CMS and ATLAS about Higgs particle (see here). Their result can be summarized in the following figure

Ellis & You: agreement with Standard Modelthat is really impressive. This means that the updated data coming out from LHC constraints even more the Higgs particle found so far to be the Standard Model one. Another impressive conclusion they are able to draw is that the couplings appear to be proportional to the masses as it should be expected from a well-behaved Higgs particle. But they emphasize that this is “a” Higgs particle and the scenario is well consistent with supersymmetry. Citing them:

The data now impose severe constraints on composite alternatives to the elementary Higgs boson of the Standard Model. However, they do not yet challenge the predictions of supersymmetric models, which typically make predictions much closer to the Standard Model values. We therefore infer that the Higgs coupling measurements, as well as its mass, provide circumstantial support to supersymmetry as opposed to these minimal composite alternatives, though this inference is not conclusive.

They say that further progress on the understanding of this particle could be granted after the upgraded LHC will run and, indeed, nobody is expecting some dramatic change into this scenario from the data at hand.

John Ellis, & Tevong You (2013). Updated Global Analysis of Higgs Couplings arXiv arXiv: 1303.3879v1


A Higgs particle but which one?

14/03/2013

ResearchBlogging.org

After Moriond conference last week, and while Moriond QCD and Aspen conferences are running yet, an important conclusion can be drawn and it is the one given in this CERN press release. The particle announced on 4th July last year is for certain a Higgs particle as it has spin 0, positive parity and couples almost like the Standard Model Higgs particle to all others. The agreement with Standard Model is embarrassingly increasing as cumulated data since last year are analyzed. Today, CMS will also update their results for the decay H\rightarrow\gamma\gamma and we will know if the small deviation observed by ATLAS will be confirmed. It is true that they see such a deviation with a larger dataset but, rather to increase, it has slightly diminished and this is not really encouraging.

So far, no other particle has been seen and no new physics beyond the Standard Model is seen at the horizon. There is some people pushing for a conclusive assignment of the nature of this boson to the vanilla Higgs particle postulated in the sixties. But it is really too early yet to draw such a conclusion and I have explained why in a paper of mine appeared today on arxiv (see here). Indeed, a formulation of the Higgs field is possible such that, at the tree level, coincides with the original Higgs field (a Higgs impostor). This is due to the existence of exact solutions of the equations of motion of such a field (see here). The relevant point to tell which one is realized in nature is through the decay rate in WW and ZZ and, with the current data, there is agreement for both yet. H->ZZ decay at CMSBut, being amplitudes exponentially damped, higher excited states of the Higgs boson cannot be easily seen presently and their eventual observation appears as a statistical fluctuation yet. This can be evaluated quantitatively. It is important because the ZZ decay is sensible to higher masses and displays some peaks that reveal themselves as statistical fluctuations. Increasing the number of events could turn these peaks into real observations.

The interesting point here is that we are moving form the discovery moment to the study phase with a lot of room for improving measurements on this Higgs particle. But the analysis for the existence of higher excited states, Higgs’ brothers, is just at its infancy.

Update: This the analogous figure from ATLAS while the figure for H\rightarrow\gamma\gamma from CMS agrees quite well with the Standard Model: 0.8\pm 0.3.

ATLAS ZZ->4l

Marco Frasca (2013). Revisiting the Higgs sector of the Standard Model arXiv arXiv: 1303.3158v1

Marco Frasca (2009). Exact solutions of classical scalar field equations J.Nonlin.Math.Phys.18:291-297,2011 arXiv: 0907.4053v2


Fabiola Gianotti at Accademia dei Lincei

11/01/2013

On November 7th last year, Fabiola Gianotti, spokesperson of ATLAS experiment at CERN and one of the discoverers of the Higgs-like boson, has been nominated fellow of the Accademia dei Lincei. This is one of the oldest and most prestigious scientific societies that held fellows like Galileo Galilei and Enrico Fermi. Today, she held a public conference with fellows both of moral and scientific classes about “The Higgs boson and our life”. Fabiola Gianotti at Accademia dei Lincei Of course, I was there to see and listen to her personally. As I entered the room, I asked “excuse me” to three people blocking my passage to the chair. When I sat, I looked at them and I realized who were: Carlo di Castro, Francesco de Martini and Giovanni Jona-Lasinio. They were all my former professors. Also Giorgio Parisi was there and later Luciano Maiani entered the audience. Undoubtedly, the audience was truly remarkable.

Lamberto Maffei, president of the Accademia, introduced Gianotti through her main achievements and awards. I would like to remember that she gave the money of the Fundamental Physics Prize for student grants.

The aim of this conference was to convey to all fellows of the Accademia and public at large what was behind the discovery of the Higgs-like particle announced on July 4th last year. For me has been a good chance to hear, from one of the persons mastering this matter, a talk addressed to everybody without the use of technical jargon and using several nice images. Gianotti has shown a very fine gift for this. I would like to reassure my readers that she used comic sans.Fabiola Gianotti on TIME cover

By my side, I was proud to hear that 1400 scientists working at CERN are Italians and that an Italian company, Ansaldo Superconduttori Genova, is responsible for one third of the realization of the superconductors at LHC and are also installed in ATLAS detector. At CERN it is working  a great majority of young people. Gianotti said that it does not matter if you are a graduate student just entered the team. If your idea is good it is taken and applied. This is what makes scientific enterprise quite different from other realities and renders it so effective. Ideas count more than any authority.

Gianotti pointed out how difficult the situation is for Italy as we have a lot of young people leaving the country for academic positions at foreign universities while there are very few students coming in Italy to do research. Also, reduced budgets from our government with nonsensical cuts can produce a gap between generations of a line that produced excellent people. Recovering would be difficult then.

Turning attention to the discovery, I would like to emphasize that Gianotti repeated more and more times that the only certainty is that Standard Model, a beautiful theory, is verified with very high precision without no hint of breaking so far. But she warned the audience that we know that it must be overcome motivating this mostly from evidence of dark matter. The new particle, she said “Higgs-like”, resemble more and more the one originally postulated by Peter Higgs et al. but they have a lot of data to analyse yet and cannot be certain it is that one yet. They hope to clarify this matter with these other data (Moriond?).Fabiola Gianotti announces the new particle. She used an interesting image to describe the Higgs field to common people and then turned to the technical one to recover with respect to the formidable physicists were present there. Who speaks Italian can appreciate this video: Gianotti, Tonelli and Bertolucci explain Higgs field with children on similar lines.

The reason why she referred to our life is that most people generally ask “Why?”. Why all this effort to catch such a particle? She gave the beautiful example of J. J. Thompson and the discovery of the electron. When this happened both Thompson’s life and that of his neighbourhood did not change at all. But with the discovery of electronics and its application we all know now what all that has meant. For the Higgs particle can happen the same. From the discovery to its possible applications can pass some time and we need fundamental physics as a priori we cannot foresee the consequences but when they appear can be devastating and change our life definitely and forever for better. Gianotti said that without fundamental research, applied research dries up and eventually dies causing serious troubles to the economy of a country. I completely share her view. She also showed how hadron therapy and pet imaging were by-products of such endeavour.

Questions took more time than expected as the talk was really exciting and several people asked questions. She took this chance to recognize her debt with Ettore Fiorini, in the audience, that introduced her to particle physics and taught her a lot about it. Also Giorgio Salvini was present and asked for beyond LHC. Gianotti said that they hope to have LHC running for more than twenty years as also happened to other accelerator facilities. Salvini participated to most of the history of particle physics since Fermi’s time. He was in the experiment at CERN that produced W and Z particles for the first time with Carlo Rubbia. Francesco de Martini asked a technical question: Has Higgs particle cosmological implications? He was referring to a paper by Lee Smolin that claims that, due to this field, geometry should change from a Riemann to a Weyl one. Fabiola Gianotti and LHCGianotti answered immediately that the cosmological implications for the Higgs particle are enormous. The reason is that this is the first scalar particle ever discovered and inflation, the main mechanism in the Standard Model of cosmology to solve the problem of the homogeneity of the universe, has as a basic ingredient a scalar field. CERN discovery shows once again that the idea of inflation is in the right direction. de Martini was not satisfied with the answer turning back to the Smolin’s paper. Then Gianotti asked support to Giorgio Parisi, Parisi is one of the greatest Italian theoretical physicist, that confirmed Gianotti’s answer and said that, even if he is not an expert in the field of general relativity, people working in this research area have devised everything but the kitchen sink and so he would not be surprised if something like this was conceived.

In the end, a very beautiful talk from a great physicist. I would like to paraphrase what Gianotti said about Higgs and its light mass: Thanks Nature for giving us Gianotti!


Follow

Get every new post delivered to your Inbox.

Join 74 other followers

%d bloggers like this: