Higgs even more standard



LHCP 2015 is going on at St. Peterburg and new results were presented by the two main collaborations at CERN. CMS and ATLAS combined the results from run 1 and improved the quality of the measured data of the Higgs particle discovered on 2012. CERN press release is here. I show you the main picture about the couplings between the Higgs field and the other particles in the Standard Model widely exposed in all the social networks

Combined couplings for the Higgs by ATLAS and CMS

What makes this plot so striking is the very precise agreement with the Standard Model. Anyhow, the ellipses are somewhat large yet to grant new physics creeping in at run 2. My view is that the couplings, determining the masses of the particles in the Standard Model, are less sensible to new physics than the strength of the signal at various decays. Also this plot is available (hat tip to Adam Falkowski)

Combined strengths at various decays by ATLAS and CMS

In this plot you can see that the Standard Model, represented by a star, is somewhat at the border of the areas of the ZZ and WW decays and that of the WW decay is making smaller. This does not imply that in the future deviations from the Standard Model will be seen here but leave the impression that this could happen in run 2 with the increasing precision expected for these measurements.

The strengths are so interesting because the Higgs sector of the Standard Model can be solved exactly with the propagator providing the values of them (see here). These generally disagree from those obtained by standard perturbation theory even if by a small extent. Besides, Higgs particle should have internal degrees of freedom living also in higher excited states. All of this to be seen at run 2 as the production rate of these states appears to be smaller as higher is their mass.

Run 2 is currently ongoing even if the expected luminosity will not be reached for this year. For sure, the next year summer conferences could provide a wealth of shocking new results. Hints are already seen by both the main collaborations and LHCb. Something new is just behind the corner.

Marco Frasca (2015). A theorem on the Higgs sector of the Standard Model arxiv arXiv: 1504.02299v1

f0(500) and f0(980) are not tetraquarks



Last week I have been in Giovinazzo, a really beautiful town near Bari in Italy. I participated at the QCD@Work conference. This conference series is now at the 7th edition and, for me, it was my second attendance. The most striking news I heard was put forward in the first day and represents a striking result indeed. GiovinazzoThe talk was given by Maurizio Martinelli on behalf of LHCb Collaboration. You can find the result on page 19 and on an arxiv paper . The question of the nature of f0(500) is a vexata quaestio since the first possible observation of this resonance. It entered in the Particle Data Group catalog as f0(600) but was eliminated in the following years. Today its existence is no more questioned and this particle is widely accepted. Also its properties as the mass and the width are known with reasonable precision starting from a fundamental work by Irinel Caprini, Gilberto Colangelo and Heinrich Leutwyler (see here). The longstanding question around this particle and its parent f0(980) was about their nature. It is generally difficult to fix the structure of a resonance in QCD and there is no exception here.

The problem arose from famous papers by Jaffe on 1977 (this one and this one) that using a quark-bag model introduced a low-energy nonet of states made of four quarks each. These papers set the stage for what has been the current understanding of the f0(500) and f0(980) resonances. The nonet is completely filled with all the QCD resonances below 1 GeV and so, it seems to fit the bill excellently.

LHCb logoSomeone challenged this kind of paradigm and claimed that f0(500) could not be a tetraquark state (e.g. see here and here but also papers by Wolfgang Ochs and Peter Minkowski disagree with the tetraquark model for these resonances). The answer come out straightforwardly from LHCb collaboration: Both f0(500) and f0(980) are not tetraquark and the original view by Jaffe is no more supported. Indeed, people that know the Nambu-Jona-Lasinio model should know quite well where the f0(500) (or \sigma ) comes from and I would also suggest that this model can also accommodate higher states like f0(980).

I should say that this is a further striking result coming from LHCb Collaboration. Hopefully, this should give important hints to a better understanding of low-energy QCD.

LHCb collaboration, R. Aaij, B. Adeva, M. Adinolfi, A. Affolder, Z. Ajaltouni, J. Albrecht, F. Alessio, M. Alexander, S. Ali, G. Alkhazov, P. Alvarez Cartelle, A. A. Alves Jr, S. Amato, S. Amerio, Y. Amhis, L. An, L. Anderlini, J. Anderson, R. Andreassen, M. Andreotti, J. E. Andrews, R. B. Appleby, O. Aquines Gutierrez, F. Archilli, A. Artamonov, M. Artuso, E. Aslanides, G. Auriemma, M. Baalouch, S. Bachmann, J. J. Back, A. Badalov, V. Balagura, W. Baldini, R. J. Barlow, C. Barschel, S. Barsuk, W. Barter, V. Batozskaya, Th. Bauer, A. Bay, L. Beaucourt, J. Beddow, F. Bedeschi, I. Bediaga, S. Belogurov, K. Belous, I. Belyaev, E. Ben-Haim, G. Bencivenni, S. Benson, J. Benton, A. Berezhnoy, R. Bernet, M. -O. Bettler, M. van Beuzekom, A. Bien, S. Bifani, T. Bird, A. Bizzeti, P. M. Bjørnstad, T. Blake, F. Blanc, J. Blouw, S. Blusk, V. Bocci, A. Bondar, N. Bondar, W. Bonivento, S. Borghi, A. Borgia, M. Borsato, T. J. V. Bowcock, E. Bowen, C. Bozzi, T. Brambach, J. van den Brand, J. Bressieux, D. Brett, M. Britsch, T. Britton, N. H. Brook, H. Brown, A. Bursche, G. Busetto, J. Buytaert, S. Cadeddu, R. Calabrese, M. Calvi, M. Calvo Gomez, A. Camboni, P. Campana, D. Campora Perez, A. Carbone, G. Carboni, R. Cardinale, A. Cardini, H. Carranza-Mejia, L. Carson, K. Carvalho Akiba, G. Casse, L. Cassina, L. Castillo Garcia, M. Cattaneo, Ch. Cauet, R. Cenci, M. Charles, Ph. Charpentier, S. -F. Cheung, N. Chiapolini, M. Chrzaszcz, K. Ciba, X. Cid Vidal, G. Ciezarek, P. E. L. Clarke, M. Clemencic, H. V. Cliff, J. Closier, V. Coco, J. Cogan, E. Cogneras, P. Collins, A. Comerma-Montells, A. Contu, A. Cook, M. Coombes, S. Coquereau, G. Corti, M. Corvo, I. Counts, B. Couturier, G. A. Cowan, D. C. Craik, M. Cruz Torres, S. Cunliffe, R. Currie, C. D’Ambrosio, J. Dalseno, P. David, P. N. Y. David, A. Davis, K. De Bruyn, S. De Capua, M. De Cian, J. M. De Miranda, L. De Paula, W. De Silva, P. De Simone, D. Decamp, M. Deckenhoff, L. Del Buono, N. Déléage, D. Derkach, O. Deschamps, F. Dettori, A. Di Canto, H. Dijkstra, S. Donleavy, F. Dordei, M. Dorigo, A. Dosil Suárez, D. Dossett, A. Dovbnya, F. Dupertuis, P. Durante, R. Dzhelyadin, A. Dziurda, A. Dzyuba, S. Easo, U. Egede, V. Egorychev, S. Eidelman, S. Eisenhardt, U. Eitschberger, R. Ekelhof, L. Eklund, I. El Rifai, Ch. Elsasser, S. Ely, S. Esen, T. Evans, A. Falabella, C. Färber, C. Farinelli, N. Farley, S. Farry, D. Ferguson, V. Fernandez Albor, F. Ferreira Rodrigues, M. Ferro-Luzzi, S. Filippov, M. Fiore, M. Fiorini, M. Firlej, C. Fitzpatrick, T. Fiutowski, M. Fontana, F. Fontanelli, R. Forty, O. Francisco, M. Frank, C. Frei, M. Frosini, J. Fu, E. Furfaro, A. Gallas Torreira, D. Galli, S. Gallorini, S. Gambetta, M. Gandelman, P. Gandini, Y. Gao, J. Garofoli, J. Garra Tico, L. Garrido, C. Gaspar, R. Gauld, L. Gavardi, E. Gersabeck, M. Gersabeck, T. Gershon, Ph. Ghez, A. Gianelle, S. Giani’, V. Gibson, L. Giubega, V. V. Gligorov, C. Göbel, D. Golubkov, A. Golutvin, A. Gomes, H. Gordon, C. Gotti, M. Grabalosa Gándara, R. Graciani Diaz, L. A. Granado Cardoso, E. Graugés, G. Graziani, A. Grecu, E. Greening, S. Gregson, P. Griffith, L. Grillo, O. Grünberg, B. Gui, E. Gushchin, Yu. Guz, T. Gys, C. Hadjivasiliou, G. Haefeli, C. Haen, S. C. Haines, S. Hall, B. Hamilton, T. Hampson, X. Han, S. Hansmann-Menzemer, N. Harnew, S. T. Harnew, J. Harrison, T. Hartmann, J. He, T. Head, V. Heijne, K. Hennessy, P. Henrard, L. Henry, J. A. Hernando Morata, E. van Herwijnen, M. Heß, A. Hicheur, D. Hill, M. Hoballah, C. Hombach, W. Hulsbergen, P. Hunt, N. Hussain, D. Hutchcroft, D. Hynds, M. Idzik, P. Ilten, R. Jacobsson, A. Jaeger, J. Jalocha, E. Jans, P. Jaton, A. Jawahery, M. Jezabek, F. Jing, M. John, D. Johnson, C. R. Jones, C. Joram, B. Jost, N. Jurik, M. Kaballo, S. Kandybei, W. Kanso, M. Karacson, T. M. Karbach, M. Kelsey, I. R. Kenyon, T. Ketel, B. Khanji, C. Khurewathanakul, S. Klaver, O. Kochebina, M. Kolpin, I. Komarov, R. F. Koopman, P. Koppenburg, M. Korolev, A. Kozlinskiy, L. Kravchuk, K. Kreplin, M. Kreps, G. Krocker, P. Krokovny, F. Kruse, M. Kucharczyk, V. Kudryavtsev, K. Kurek, T. Kvaratskheliya, V. N. La Thi, D. Lacarrere, G. Lafferty, A. Lai, D. Lambert, R. W. Lambert, E. Lanciotti, G. Lanfranchi, C. Langenbruch, B. Langhans, T. Latham, C. Lazzeroni, R. Le Gac, J. van Leerdam, J. -P. Lees, R. Lefèvre, A. Leflat, J. Lefrançois, S. Leo, O. Leroy, T. Lesiak, B. Leverington, Y. Li, M. Liles, R. Lindner, C. Linn, F. Lionetto, B. Liu, G. Liu, S. Lohn, I. Longstaff, J. H. Lopes, N. Lopez-March, P. Lowdon, H. Lu, D. Lucchesi, H. Luo, A. Lupato, E. Luppi, O. Lupton, F. Machefert, I. V. Machikhiliyan, F. Maciuc, O. Maev, S. Malde, G. Manca, G. Mancinelli, M. Manzali, J. Maratas, J. F. Marchand, U. Marconi, C. Marin Benito, P. Marino, R. Märki, J. Marks, G. Martellotti, A. Martens, A. Martín Sánchez, M. Martinelli, D. Martinez Santos, F. Martinez Vidal, D. Martins Tostes, A. Massafferri, R. Matev, Z. Mathe, C. Matteuzzi, A. Mazurov, M. McCann, J. McCarthy, A. McNab, R. McNulty, B. McSkelly, B. Meadows, F. Meier, M. Meissner, M. Merk, D. A. Milanes, M. -N. Minard, N. Moggi, J. Molina Rodriguez, S. Monteil, D. Moran, M. Morandin, P. Morawski, A. Mordà, M. J. Morello, J. Moron, R. Mountain, F. Muheim, K. Müller, R. Muresan, M. Mussini, B. Muster, P. Naik, T. Nakada, R. Nandakumar, I. Nasteva, M. Needham, N. Neri, S. Neubert, N. Neufeld, M. Neuner, A. D. Nguyen, T. D. Nguyen, C. Nguyen-Mau, M. Nicol, V. Niess, R. Niet, N. Nikitin, T. Nikodem, A. Novoselov, A. Oblakowska-Mucha, V. Obraztsov, S. Oggero, S. Ogilvy, O. Okhrimenko, R. Oldeman, G. Onderwater, M. Orlandea, J. M. Otalora Goicochea, P. Owen, A. Oyanguren, B. K. Pal, A. Palano, F. Palombo, M. Palutan, J. Panman, A. Papanestis, M. Pappagallo, C. Parkes, C. J. Parkinson, G. Passaleva, G. D. Patel, M. Patel, C. Patrignani, A. Pazos Alvarez, A. Pearce, A. Pellegrino, M. Pepe Altarelli, S. Perazzini, E. Perez Trigo, P. Perret, M. Perrin-Terrin, L. Pescatore, E. Pesen, K. Petridis, A. Petrolini, E. Picatoste Olloqui, B. Pietrzyk, T. Pilař, D. Pinci, A. Pistone, S. Playfer, M. Plo Casasus, F. Polci, A. Poluektov, E. Polycarpo, A. Popov, D. Popov, B. Popovici, C. Potterat, A. Powell, J. Prisciandaro, A. Pritchard, C. Prouve, V. Pugatch, A. Puig Navarro, G. Punzi, W. Qian, B. Rachwal, J. H. Rademacker, B. Rakotomiaramanana, M. Rama, M. S. Rangel, I. Raniuk, N. Rauschmayr, G. Raven, S. Reichert, M. M. Reid, A. C. dos Reis, S. Ricciardi, A. Richards, M. Rihl, K. Rinnert, V. Rives Molina, D. A. Roa Romero, P. Robbe, A. B. Rodrigues, E. Rodrigues, P. Rodriguez Perez, S. Roiser, V. Romanovsky, A. Romero Vidal, M. Rotondo, J. Rouvinet, T. Ruf, F. Ruffini, H. Ruiz, P. Ruiz Valls, G. Sabatino, J. J. Saborido Silva, N. Sagidova, P. Sail, B. Saitta, V. Salustino Guimaraes, C. Sanchez Mayordomo, B. Sanmartin Sedes, R. Santacesaria, C. Santamarina Rios, E. Santovetti, M. Sapunov, A. Sarti, C. Satriano, A. Satta, M. Savrie, D. Savrina, M. Schiller, H. Schindler, M. Schlupp, M. Schmelling, B. Schmidt, O. Schneider, A. Schopper, M. -H. Schune, R. Schwemmer, B. Sciascia, A. Sciubba, M. Seco, A. Semennikov, K. Senderowska, I. Sepp, N. Serra, J. Serrano, L. Sestini, P. Seyfert, M. Shapkin, I. Shapoval, Y. Shcheglov, T. Shears, L. Shekhtman, V. Shevchenko, A. Shires, R. Silva Coutinho, G. Simi, M. Sirendi, N. Skidmore, T. Skwarnicki, N. A. Smith, E. Smith, E. Smith, J. Smith, M. Smith, H. Snoek, M. D. Sokoloff, F. J. P. Soler, F. Soomro, D. Souza, B. Souza De Paula, B. Spaan, A. Sparkes, F. Spinella, P. Spradlin, F. Stagni, S. Stahl, O. Steinkamp, O. Stenyakin, S. Stevenson, S. Stoica, S. Stone, B. Storaci, S. Stracka, M. Straticiuc, U. Straumann, R. Stroili, V. K. Subbiah, L. Sun, W. Sutcliffe, K. Swientek, S. Swientek, V. Syropoulos, M. Szczekowski, P. Szczypka, D. Szilard, T. Szumlak, S. T’Jampens, M. Teklishyn, G. Tellarini, F. Teubert, C. Thomas, E. Thomas, J. van Tilburg, V. Tisserand, M. Tobin, S. Tolk, L. Tomassetti, D. Tonelli, S. Topp-Joergensen, N. Torr, E. Tournefier, S. Tourneur, M. T. Tran, M. Tresch, A. Tsaregorodtsev, P. Tsopelas, N. Tuning, M. Ubeda Garcia, A. Ukleja, A. Ustyuzhanin, U. Uwer, V. Vagnoni, G. Valenti, A. Vallier, R. Vazquez Gomez, P. Vazquez Regueiro, C. Vázquez Sierra, S. Vecchi, J. J. Velthuis, M. Veltri, G. Veneziano, M. Vesterinen, B. Viaud, D. Vieira, M. Vieites Diaz, X. Vilasis-Cardona, A. Vollhardt, D. Volyanskyy, D. Voong, A. Vorobyev, V. Vorobyev, C. Voß, H. Voss, J. A. de Vries, R. Waldi, C. Wallace, R. Wallace, J. Walsh, S. Wandernoth, J. Wang, D. R. Ward, N. K. Watson, D. Websdale, M. Whitehead, J. Wicht, D. Wiedner, G. Wilkinson, M. P. Williams, M. Williams, F. F. Wilson, J. Wimberley, J. Wishahi, W. Wislicki, M. Witek, G. Wormser, S. A. Wotton, S. Wright, S. Wu, K. Wyllie, Y. Xie, Z. Xing, Z. Xu, Z. Yang, X. Yuan, O. Yushchenko, M. Zangoli, M. Zavertyaev, F. Zhang, L. Zhang, W. C. Zhang, Y. Zhang, A. Zhelezov, A. Zhokhov, L. Zhong, & A. Zvyagin (2014). Measurement of the resonant and CP components in
$\overline{B}^0\rightarrow J/ψπ^+π^-$ decays arXiv arXiv: 1404.5673v2
Irinel Caprini, Gilberto Colangelo, & Heinrich Leutwyler (2005). Mass and width of the lowest resonance in QCD Phys.Rev.Lett.96:132001,2006 arXiv: hep-ph/0512364v2
Jaffe, R. (1977). Multiquark hadrons. I. Phenomenology of Q^{2}Q[over ¯]^{2} mesons Physical Review D, 15 (1), 267-280 DOI: 10.1103/PhysRevD.15.267
Jaffe, R. (1977). Multiquark hadrons. II. Methods Physical Review D, 15 (1), 281-289 DOI: 10.1103/PhysRevD.15.281
G. Mennessier, S. Narison, & X. -G. Wang (2010). The sigma and f_0(980) from K_e4+pi-pi, gamma-gamma scatterings, J/psi,
phi to gamma sigma_B and D_s to l nu sigma_B Nucl.Phys.Proc.Suppl.207-208:177-180,2010 arXiv: 1009.3590v1

Marco Frasca (2010). Glueball spectrum and hadronic processes in low-energy QCD Nucl.Phys.Proc.Suppl.207-208:196-199,2010 arXiv: 1007.4479v2

Kyoto, arXiv and all that



Today, Kyoto conference HCP2012 has started. There is already an important news from LHCb that proves for the first time the existence of the decay B_s\rightarrow\mu^+\mu^-. They find close agreement with the Standard Model (see here). Another point scored by this model and waiting for new physics yet. You can find the program with all the talks to download here. There is a lot of expectations from the update on the Higgs search: The great day is Thursday. Meantime, there is Jester providing some rumors (see here on twitter side) and seem really interesting.

I have a couple of papers to put to the attention of my readers from arXiv. Firstly, Yuan-Sen Ting and Bryan Gin-ge Chen provided a further improved redaction of the Coleman’s lectures (see here). This people is doing a really deserving work and these lectures are a fundamental reading for any serious scholar on quantum field theory.

Axel Weber posted a contribution to a conference (see here) summing up his main conclusions on the infrared behavior of the running coupling and the two-point functions for a Yang-Mills theory. He makes use of renormalization group and the inescapable conclusion is that if one must have a decoupling solution, as lattice computations demand, then the running coupling reaches an infrared trivial fixed point. This is in close agreement with my conclusions on this matter and it is very pleasant to see them emerge from another approach.

Sidney Coleman (2011). Notes from Sidney Coleman’s Physics 253a arXiv arXiv: 1110.5013v4

Axel Weber (2012). The infrared fixed point of Landau gauge Yang-Mills theory arXiv arXiv: 1211.1473v1

%d bloggers like this: