Return in Paris


After two years since the last edition, I was back in Paris to participate to the Twelfth Workshop on Non-perturbative Quantum Chromodynamics. The conference is organized by high-energy group at Brown University and held at Institut d’Astrophysique de ParisProfessor Chung-I Tan and Professor Berndt Mueller from Duke University are the organizers. As it also happened in the precedent edition, the workshop was really interesting and rich of ideas for research. The first talk was given by Kostantinos Orginos and was about nuclear physics emerging from lattice computations. The Sein (Paris)This is a matter that I am involved into as a “final user” and so, very near my interests. It is noteworthy to point out how current technology permits  to extract such results from lattice QCD making this a useful tool for the understanding of low-energy phenomenology. With Kostantinos,  his wife Vassiliki Panoussi and sons, we have had a nice social dinner on Tuesday night and I have had an interesting discussion about the current situation of lattice computations. The next speaker was Philippe de Forcrand that is well-known for his works on finite temperature QCD on the lattice.   He showed how the effective Yang-Mills theory at high temperature is surprisingly good with respect to lattice results also lowering temperatures at few times the critical temperature. Another interesting talk was the one by Peter Petreczy about the observables of QCD at finite temperature presenting also the most recent value for the critical temperature. As my readers may know, I computed this value in my recent paper on Physical Review C (see here) properly corrected by the mass gap of Yang-Mills theory. Norberto Scoccola and Daniel Gomez-Dumm showed similar results (see here).

On Tuesday it was the ultrarelativistic Heavy-ion collision session. This was particularly interesting and involved the talks of two friends of mine: Marco Ruggieri and Salvatore Plumari. In this area of research there is a really interesting and hot debated situation. On the other side, there is plenty of experimental results from RHIC and LHC. The session chair was Jean-Yves Ollitrault. He put the foundations to the current understanding of the quark-gluon plasma through a hydrodynamic approximation. What is observed in the experiments is the production of a flow of particles in a transverse direction named elliptic flow. Eiffel Tower (Paris)This is a clear evidence of existence for the quark-gluon plasma. Marco and Salvatore work in the group of Vincenzo Greco at University of Catania in Italy. The idea they based their work on is to derive the hydrodynamic equations from a kinetic description as the one provided by the Boltzmann equation. This approach opens up the scene to the possibility to derive such an equation and the full description of the quark-gluon plasma starting directly from QCD and fixing the collisional integral of the kinetic equation. Of course, one should understand the applicability conditions but my take is that, being the running coupling going to zero due to asymptotic freedom, a quark-gluon plasma should have scarce multi-collision effects. On the other side, this is a charged plasma but lives for a very small time. This means that this approach can prove to be really successful. One of the open questions is if, going at higher energies, a state called “color glass condensate” should form and this is a matter of a hot debate in the community. This is creating some tension that is reminiscent of the story I recounted about Landau gauge propagators for pure Yang-Mills theory (see here). A color glass condensate gives an increasing lower bound on the viscosity to entropy ratio by a factor 2 with respect to 1/4\pi, also computed from string theory, and appears less efficient with respect to observed elliptic flow at RHIC (see here). This kind of wars is often unproductive in physics and science at large as it slows down progress and good works could turn out unpublished. In situations like this, researchers should have eyes wide open and open minds granting all the contenders to be fairly listened waiting for experiments or careful lattice computations to say the last word. This should teach the history of Landau gauge propagators and also by looking back to history of physics. Otherwise we will stay on a silly forever war  where we are only able to prove to the rest of mankind that nothing has been learned from the past.

On Wednesday the session was dedicated to AdS/CFT, Holography, and Scattering. There was the talk of Carl Bender that is currently working on PT quantum mechanics. He is the pioneer of strong perturbation for quantum systems and quantum field theory. I often cited his work that has been a source of inspiration. David Dudal also spoke and discussed a holographic model for the analysis of strong ion collisions and the effect of the huge magnetic field generated. He gets results reminiscent of the Nambu-Jona-Lasinio model.  David is one of the proponents of the Refined Gribov-Zwanzinger model (see here). This is a real successful approach to the understanding of Landau gauge propagators and fits quite well with my results in the deep infrared behavior of a Yang-Mills theory as I also pointed out in my talk (see below).

On Thursday there was my talk in Paris. I will not comment about. On the morning, I heard the talk by Chung-I Tan, one of the organizers. He uses holographic techniques and the running coupling he obtains is similar to mine into an expansion in the inverse of the square root of the coupling. This is a nice result and it would be interesting to compare both of them numerically. One of the most interesting talks I heard was the one by Guy de Teramond. I have had reason to appreciate his work with Stanley Brodsky about holographic QCD and reduction to a Schrödinger-like equation to identify hadronic states (see here). With Guy I exchanged some interesting words and he was so kind to make compliments to my blog. A couple of talks were presented by cosmologists. The one by Patrick Peter about decoherence and cosmology struck me once again. I heard before about this matter and what makes me surprise is that the question of decoherence for a closed quantum system is stopped yet at the old Bohm pilot wave or a multiverse. Eiffel Tower SeesightThis should not be considered serious ways anymore because there is a theorem due to Barry Simon and Elliott Lieb, two giants of mathematical physics, that states that the limit of a large number of particles, in a reasonable many-body quantum system, reaches a Thomas-Fermi limit (see here where you can download a pdf). It is known that the Thomas-Fermi limit is just a semiclassical limit and the behavior of the matter is essentially classical. This means that one has not to recur to exotic hypothesis to understand what went on in the primordial universe and its fluctuations. I have recounted all this matter here. The final talk was given by Herbert Fried and was about a new understanding of dark matter and the universe using a new view of quantum electrodynamics.

It was a great workshop and I have been very happy to be there also this year. I hope people at Brown University will repeat this again. Thanks a lot!

Marco Frasca (2011). Chiral symmetry in the low-energy limit of QCD at finite temperature Phys. Rev. C 84, 055208 (2011) arXiv: 1105.5274v4

D. Gomez Dumm, & N. N. Scoccola (2004). Characteristics of the chiral phase transition in nonlocal quark models Phys.Rev. C72 (2005) 014909 arXiv: hep-ph/0410262v2

Ollitrault, J. (1992). Anisotropy as a signature of transverse collective flow Physical Review D, 46 (1), 229-245 DOI: 10.1103/PhysRevD.46.229

M. Ruggieri, F. Scardina, S. Plumari, & V. Greco (2013). Elliptic Flow from Nonequilibrium Color Glass Condensate Initial
Conditions arXiv arXiv: 1303.3178v1

David Dudal, John Gracey, Silvio Paolo Sorella, Nele Vandersickel, & Henri Verschelde (2008). A refinement of the Gribov-Zwanziger approach in the Landau gauge:
infrared propagators in harmony with the lattice results Phys.Rev.D78:065047,2008 arXiv: 0806.4348v2

Lieb, E., & Simon, B. (1973). Thomas-Fermi Theory Revisited Physical Review Letters, 31 (11), 681-683 DOI: 10.1103/PhysRevLett.31.681

Lieb, E., & Simon, B. (1977). The Thomas-Fermi theory of atoms, molecules and solids Advances in Mathematics, 23 (1), 22-116 DOI: 10.1016/0001-8708(77)90108-6

Marco Frasca (2006). Thermodynamic Limit and Decoherence: Rigorous Results Journal of Physics: Conference Series 67 (2007) 012026 arXiv: quant-ph/0611024v1

Back from Paris


It is several days that I have no more posted on the blog but for a very good reason: I was in Paris for the Eleventh Workshop on Non-Perturbative Quantum Chromodynamics (see here). It has been a beautiful chance to see Paris with the eyes of a tourist and being immersed in a lot of physics in the area I am currently contributing. The conference was held at the Institut d’Astrophyisique de Paris. This week was indeed plenty of information for people in high-energy physics due to the release by D0 of their measurements on the Wjj data, showing that the almost 5 sigma bump of CDF was not there (see here, here and here). In the conference there has been room for talks by experimentalists too and it was the most shocking part as I will explain below.

The talks were somehow interesting with a couple of days mostly dedicated to AdS/CFT approach for QCD. So, string theory got a lot of space even if I should say that more promising approaches seem to exist. The first day there have been a couple of talks that were very near my interest by Dario Zappalà and Marco Ruggieri. They were reporting on their very recent papers (here and here). With Marco, I spent all the week together while with Dario we have had a nice dinner near Latin Quartier. The question Dario presented was about the existence of massive excitations (let me say “persistence”) also beyond the critical temperature for Yang-Mills theory. We discussed together with Marco this result and Marco claimed that massive excitations should have melted beyond the critical temperature while my view is that the residual of mass should be due to temperature corrections to the mass spectrum of the theory. Marco in his talk presented the idea of measuring the chiral chemical potential on the lattice as this could give plain evidence of existence for the critical endpoint without the annoying sign problem. A proof of existence of the critical endpoint is somehow the Holy Grail of finite temperature QCD and something under a lot of studies both theoretically and on the lattice. So, Marco’s proposal can turn out a significant shortcut toward the reaching of this goal.

The second day Carl Bender gave a very beautiful talk telling us about PT invariant quantum mechanics. PT stays for Parity and Time reversal. The point to start from is the Dirac postulate about the Hamiltonian being Hermitian self-adjoint. Differently from the other postualates of quantum mechanics, this one is too much a mathematical requirement and one could ask if can be made somewhat looser. The paradigm Hamiltonian has the from H=p^2+ix^3. The answer is yes of course and we were left with the doubt that maybe this is the proper formulation of quantum mechanics rather the standard one. I suspect that this could represent a possible technique useful in quantum gravity studies.

I have already said of the two days on string theory. I have just noticed the talk by Luca Mazzucato showing how, with his approach, my scaling with \lambda^\frac{1}{4} for the energy spectrum could be recovered in a strong coupling expansion being \lambda the ‘t Hooft coupling. Unfortunately, Gabriele Veneziano could not partecipate.

On Wednesday there was the most shocking declaration from an experimentalist: “We do not understand the proton”. The reason for this arises from the results presented by people from CERN working at LHC. They showed a systematic deviation of their Montecarlo simulations from experimental data. This means for us, working in this area, that their modeling of low-energy QCD is bad and their possible estimation of the background unsure. There is no way currently to get an exact evaluation of the proton scattering section. I am somewhat surprised by this as so far, as I have always pointed out in this blog, at least the structure of the gluon propagator at low energies should be known exactly from the lattice. So, modeling the proton in such Montecarlo models should be a mitigated issue. This does not seem to be so and these different communities do not seem to talk each other at all. After these shocking news, the evening we took an excellent social dinner and I have had some fine discussions with foreigners colleagues that were well aware of the books from Umberto Eco. One of these, Karl Landsteiner, suggested us to visit the Pantheon to look at the Foucault pendulum. I, Marco Ruggieri and Orlando Oliveira took this initiative the next day and it was a very nice place to visit. If you are a physicist you can understand the emotion of being there seeing that sphere moving like Newton’s equations demand and inexorably proving the rotation of the Earth. Karl gave an interesting talk that day where AdS/CFT is used to obtain transport coefficients in heavy ion collisions.

In the same day, Orlando Oliveira gave his talk. Orlando is a friend of mine and gave relevant contribution to our understanding of the behavior of low-energy gluon propagator. He has been the author of one of the papers that, at Regensburg on 2007, started the end of the so called “scaling solution” for the gluon propagator (see here). Orlando is going ahead, starting from the acquired form of the gluon propagator, to understand low-energy phenomenology of nuclear forces. In this work, he and his colleagues introduce an octect of scalar fields having the aim to produce the gluon mass through a non-zero vacuum expectation value (see here) producing chiral symmetry breaking. My work and that of Orlando are somewhat overlapped in the initial part where we have an identical understanding of the low-energy behavior of  Yang-Mills theory.

On Friday, there have been a couple of significant events. The first one was my talk. This is a report on my recent paper. I will not discuss this point further leaving this material to your judgement. The second relevant event was given in the talks by Thierry Grandou and our Chairman and Organizer Herbert Fried. The relevant paper is here. While Grandou made a more mathematical introduction with a true important result: the resummation of all gluon exchange diagrams realizing some dream of having completely solved QCD, Fried provided a more concrete result giving the binding potential between quarks analytically obtained from the preceding theorem. We were somehow astonished by this that seems just a small step away from the Millenium prize. Berndt Mueller, one of the Organizers, suggested to Fried to determine the mass gap and wait a couple of years to get the prize. Indeed, this appears a true striking exact result in the realm of QCD.

All in all, an interesting conference in a special place: Paris. For me, it has been a very nice period of full immersion in physics with the company of very nice friends.

Update: Mary Ann Rotondo put online the slides of the talks (see here).

P. Castorina, V. Greco, D. Jaccarino, & D. Zappalà (2011). A reanalysis of Finite Temperature SU(N) Gauge Theory arXiv arXiv: 1105.5902v1

Marco Ruggieri (2011). The Critical End Point of Quantum Chromodynamics Detected by Chirally
Imbalanced Quark Matter arXiv arXiv: 1103.6186v1

Irene Amado, Karl Landsteiner, & Francisco Pena-Benitez (2011). Anomalous transport coefficients from Kubo formulas in Holography JHEP 05 (2011) 081 arXiv: 1102.4577v3

O. Oliveira, W. de Paula, & T. Frederico (2011). Linking Dynamical Gluon Mass to Chiral Symmetry Breaking via a QCD Low
Energy Effective Field Theory arXiv arXiv: 1105.4899v1

Marco Frasca (2011). Chiral symmetry in the low-energy limit of QCD at finite temperature arXiv arXiv: 1105.5274v2

H. M. Fried, Y. Gabellini, T. Grandou, & Y. -M. Sheu (2009). Gauge Invariant Summation of All QCD Virtual Gluon Exchanges Eur.Phys.J.C65:395-411,2010 arXiv: 0903.2644v2

%d bloggers like this: