Quantum gravity

27/12/2015

ResearchBlogging.org

Quantum gravity appears today as the Holy Grail of physics. This is so far detached from any possible experimental result but with a lot of attentions from truly remarkable people anyway. In some sense, if a physicist would like to know in her lifetime if her speculations are worth a Nobel prize, better to work elsewhere. Anyhow, we are curious people and we would like to know how does the machinery of space-time work this because to have an engineering of space-time would make do to our civilization a significant leap beyond.

A fine recount of the current theoretical proposals has been rapidly presented by Ethan Siegel in his blog. It is interesting to notice that the two most prominent proposals, string theory and loop quantum gravity, share the same difficulty: They are not able to recover the low-energy limit. For string theory this is a severe drawback as here people ask for a fully unified theory of all the interactions. Loop quantum gravity is more limited in scope and so, one can think to fix theAlain Connes problem in a near future. But of all the proposals Siegel is considering, he is missing the most promising one: Non-commutative geometry. This mathematical idea is due to Alain Connes and earned him a Fields medal. So far, this is the only mathematical framework from which one can rederive the full Standard Model with all its particle content properly coupled to the Einstein’s general relativity. This formulation works with a classical gravitational field and so, one can possibly ask where quantized gravity could come out. Indeed, quite recently, Connes, Chamseddine and Mukhanov (see here and here), were able to show that, in the context of non-commutative geometry, a Riemannian manifold results quantized in unitary volumes of two kind of spheres. The reason why there are two kind of unitary volumes is due to the need to have a charge conjugation operator and this implies that these volumes yield the units (1,i) in the spectrum. This provides the foundations for a future quantum gravity that is fully consistent from the start: The reason is that non-commutative geometry generates renormalizable theories!

The reason for my interest in non-commutative geometry arises exactly from this. Two years ago, I, Alfonso Farina and Matteo Sedehi obtained a publication about the possibility that a complex stochastic process is at the foundations of quantum mechanics (see here and here). We described such a process like the square root of a Brownian motion and so, a Bernoulli process appeared producing the factor 1 or i depending on the sign of the steps of the Brownian motion. This seemed to generate some deep understanding about space-time. Indeed, the work by Connes, Chamseddine and Mukhanov has that understanding and what appeared like a square root process of a Brownian motion today is just the motion of a particle on a non-commutative manifold. Here one has simply a combination of a Clifford algebra, that of Dirac’s matrices, a Wiener process and the Bernoulli process representing the scattering between these randomly distributed quantized volumes. Quantum mechanics is so fundamental that its derivation from a geometrical structure with added some mathematics from stochastic processes makes a case for non-commutative geometry as a serious proposal for quantum gravity.

I hope to give an account of this deep connection in a near future. This appears a rather exciting new avenue to pursue.

Ali H. Chamseddine, Alain Connes, & Viatcheslav Mukhanov (2014). Quanta of Geometry: Noncommutative Aspects Phys. Rev. Lett. 114 (2015) 9, 091302 arXiv: 1409.2471v4

Ali H. Chamseddine, Alain Connes, & Viatcheslav Mukhanov (2014). Geometry and the Quantum: Basics JHEP 12 (2014) 098 arXiv: 1411.0977v1

Farina, A., Frasca, M., & Sedehi, M. (2013). Solving Schrödinger equation via Tartaglia/Pascal triangle: a possible link between stochastic processing and quantum mechanics Signal, Image and Video Processing, 8 (1), 27-37 DOI: 10.1007/s11760-013-0473-y


Ted Jacobson’s deep understanding

05/03/2009

A few weeks ago I published a post about Ted Jacobson and his deep understanding of general relativity (see here).  Jacobson proved in 1995 that Einstein equations can be derived from thermodynamic arguments as an equation of state. To get the proof, Jacobson used Raychaudhuri equation and the proportionality relation between area and entropy holding for all local acceleration horizons. This result implies that exist some fundamental quantum degrees of freedom from which Einstein equations are obtained by properly managing the corresponding partition function. To estabilish such a connection is presently not at all a trivial matter and there are a lot of people around the World trying to achieve this goal even if we lack any experimental result that could lead the way.

Today in arxiv appeared a nice paper by Ram Brustein and Merav Hadad that generalize Jacobson’s result to a wider class of gravitational theories having Einstein equations as a particular case (see here). This result appears relevant in view of the fact that a theory exploiting quantum gravity could have as a low-energy limit some kind of modified Einstein equations, containing at least coupling with matter. Anyhow, we see how vacuum of quantum field theory seems to become even more important in our understanding of behavior of space-time.


Ricci flow as a stochastic process

30/01/2009

Yesterday I have posted a paper on arxiv (see here). In this work I prove a theorem about Ricci flow. The question I give an answer is the following. When you have a heat equation you have always a stochastic process from which such an equation can be derived. In two dimensions the Ricci flow takes the straightforward form of a heat equation. So, could it be derived from a stochastic process? The answer is affirmative and can be obtained through a generalization of path integrals (Wiener integrals) on a Riemannian manifold given here. One can write for the metric something like

g=\int [dq]\exp[-{\cal L}(q)]g_0

so, what is \cal L? The really interesting answer is that this is Perelman \cal L-length functional. A similar expression was derived by Bryce DeWitt in the context of Feynman’s path integrals in a non-Euclidean manifold in 1957 (see here) but in this case we are granted of the existence of the integral.

This result shows a really interesting conclusion that underlying Ricci flow there is a stochastic process (Wiener process), at least in two dimensions. So, we propose a more general conjecture: Ricci flow is generated by a Wiener process independently on the dimensionality of the manifold.

I’ll keep on working on this as this result provide a clear path to quantum gravity. Mostly, I would like to understand how Ricci flow and the non-linear sigma model are connected. Also here, I guess, Perelman will play a leading role.


Ricci solitons

22/01/2009

These days I am looking at all this area of mathematical research born with Richard Hamilton and put at maturity with the works of Grisha Perelman. As all of you surely know the conclusion was that the Thurston conjecture, implying Poincare’ conjecture, is a theorem. These results present the shocking aspect of a deep truth waiting for an understanding by physicists and, I think that this comes out unexpectedly, statisticians (do you know Fischer information matrix and Cramer-Rao bound?).

One of the most shocking concept mathematicians introduced working with Ricci flow is a Ricci soliton. I will use some mathematics to explain this. A Ricci flow is given by

\frac{\partial g_{ik}}{\partial t}= -2R_{ik}

a Ricci soliton is a metric solving the equation

R_{ik}-L_X g_{ik} = \Lambda g_{ik}

where I have used an awkward notation for the Lie derivative along a field X but if this field is a scalar than one has a gradient soliton. I think that all of you will recognize these equations that for a Lorentzian metric are just Einstein equations in vacuum with a cosmological constant! Now, I have found a beautiful paper about all this question on arxiv (see here). This paper gives the first meaningful application to physics of this striking concept. Ricci solitons are resembling a kind of behavior of the metric under the flow that can be expanding, collapsing or static depending on the cosmological constant.

As time goes by we learn something deeper about Einstein equations. Their very nature seems rooted in quite recent concepts coming from differential geometry and it is my personal view that whatever quantum gravity theory we will formulate, these are the questions we have to cope with.


Ted Jacobson and quantum gravity

15/01/2009

There are some days when concepts are there running round and round in my head. I have taken a look at the Poincare’ conjecture and was really impressed by the idea of the Ricci’s flow. People with some background in mathematics should read this paper that contains a 493 pages long discussion of the Perelman proof and gives all technical details about that and the mathematics behind Ricci’s flow. If you have a manifold endowed with a metric g then Ricci’s flow satisfies the equation

\frac{\partial g_{ik}}{\partial t}=-2R_{ik}

being R_{ik} the Ricci tensor and t is taken to be time for convention. People knowing differential geometry should be accustomed with the fact that a flat manifold is not given by taking the Ricci tensor to be zero, rather is the Riemann tensor that should be null. But Einstein equations in vacuum are given by R_{ik}=0 whose most known exact solution is Schwarschild solution. So, what has the Ricci’s flow so shocking to interest physicists?

Consider a two dimensional manifold that has only conformal metrics. In this case the Ricci’s flow takes a very simple form

\frac{\partial g}{\partial t}=\triangle g

where \triangle is the Laplace-Beltrami operator. This is a Fokker-Planck equation or, if you prefer, the heat equation. Fokker-Planck equations enter into statistical physics to describe a system approaching equilibrium and are widely discussed in the study of Brownian motion. So, Einstein equations seem to be strongly related to some kind of statistical equilibrium given by the solution of a Fokker-Planck like equation taking \frac{\partial g}{\partial t}=0 and, in some way, a deep relation seems to exist between thermodynamics and Einstein equations .

Indeed Einstein equations are an equation of state! This striking result has been obtained by Ted Jacobson. I point out to you a couple of papers by him where this result is given here and here. This result has the smell of a deep truth as also happens for the Bekenstein-Hawking entropy of a black hole. The next question should be what is the partition function producing such an equation of state?  Here enters the question of quantum gravity in all its glory.

So, an equilibrium solution of an heat equation produces Einstein equations as seen from the Ricci’s flow. Does it exist in physics a fundamental model producing a Ricci’s flow? The answer is a resounding yes and this is the non-linear sigma model. This result was firstly obtained by Daniel Friedan in a classical paper that was the result of his PhD work. You can get a copy of the PhD thesis at his homepage. Ricci’s flow appears as a renormalization group equation in the quantum theory of the non-linear sigma model with energy in place of time and the link with thermodynamics and equations of state does not seem so evident. This result lies at the foundations of string theory.

Indeed, one can distinguish between a critical string and a non-critical string. The former corresponds to a non-linear sigma model in 26 dimensions granting a consistent quantum field theory. The latter is under study yet but il va sans dire that the greatest success went to the critical string. So, we can see that if we want to understand the heat operator describing Ricci’s flow in physics we have to buy string theory at present.

Is this an unescapable conclusion? We have not yet an answer to this question. Ricci’s flow seems to be really fundamental to understand quantum gravity as it represents a typical equation of  a system moving toward equilibrium in quest for the identification of microstates. Fundamental results from Bekenstein, Hawking and Jacobson prove without doubt that things stay this way, that is, there is a more fundamental theory underlying general relativity that should have a similar link as mechanical statistics has with thermodynamics. So, what are quanta of space-time?


Quantum mechanics and gravity

11/11/2008

Reading the daily by arxiv today I cannot overlook a quite interesting paper that will appear soon on Physical Review Letters. This paper (see here), written by Saurya Das and Elias Vagenas, presents some relevant conclusions about the effects of gravity in quite common quantum mechanical systems. The authors rely their conclusions on an acquired result, due mostly to string theory, that a fundamental length must exist and this fundamental length modifies in a well defined way the indeterminacy principle. So, one can quantify this effect on whatever quantum mechanical system through a correcting Hamiltonian term and evaluating the effect of gravity on this system. In this way one can obtain an estimation on how relevant is the effect and how far can be an experimental measurement of this. The conclusions the authors reached are quite interesting. Of course, all of the cases imply a too small effect to be in the reach of a laboratory observation but, the most not trivial conclusion is that could exist an intermediate fundamental length that could be observed e.g. at LHC. This intermediate length should be placed between the electroweak and the Planck scale.

It is the first time that I see such estimations on quite simple quantum mechanical models and I would expect more extended analysis on a similar line. Surely, it would be striking to see in laboratory such a tiny effect correcting the Lamb shift. But, working in quantum optics, I learned that progress experimentalists are able to put out can be very impressive in a very short time. So, I would not be surprised if in some years Physical Review Letters should publish some experimental letter about this matter being the first evidence of a quantum gravity effect in a laboratory.


%d bloggers like this: