f0(500) and f0(980) are not tetraquarks

27/06/2014

ResearchBlogging.org

Last week I have been in Giovinazzo, a really beautiful town near Bari in Italy. I participated at the QCD@Work conference. This conference series is now at the 7th edition and, for me, it was my second attendance. The most striking news I heard was put forward in the first day and represents a striking result indeed. GiovinazzoThe talk was given by Maurizio Martinelli on behalf of LHCb Collaboration. You can find the result on page 19 and on an arxiv paper . The question of the nature of f0(500) is a vexata quaestio since the first possible observation of this resonance. It entered in the Particle Data Group catalog as f0(600) but was eliminated in the following years. Today its existence is no more questioned and this particle is widely accepted. Also its properties as the mass and the width are known with reasonable precision starting from a fundamental work by Irinel Caprini, Gilberto Colangelo and Heinrich Leutwyler (see here). The longstanding question around this particle and its parent f0(980) was about their nature. It is generally difficult to fix the structure of a resonance in QCD and there is no exception here.

The problem arose from famous papers by Jaffe on 1977 (this one and this one) that using a quark-bag model introduced a low-energy nonet of states made of four quarks each. These papers set the stage for what has been the current understanding of the f0(500) and f0(980) resonances. The nonet is completely filled with all the QCD resonances below 1 GeV and so, it seems to fit the bill excellently.

LHCb logoSomeone challenged this kind of paradigm and claimed that f0(500) could not be a tetraquark state (e.g. see here and here but also papers by Wolfgang Ochs and Peter Minkowski disagree with the tetraquark model for these resonances). The answer come out straightforwardly from LHCb collaboration: Both f0(500) and f0(980) are not tetraquark and the original view by Jaffe is no more supported. Indeed, people that know the Nambu-Jona-Lasinio model should know quite well where the f0(500) (or \sigma ) comes from and I would also suggest that this model can also accommodate higher states like f0(980).

I should say that this is a further striking result coming from LHCb Collaboration. Hopefully, this should give important hints to a better understanding of low-energy QCD.

LHCb collaboration, R. Aaij, B. Adeva, M. Adinolfi, A. Affolder, Z. Ajaltouni, J. Albrecht, F. Alessio, M. Alexander, S. Ali, G. Alkhazov, P. Alvarez Cartelle, A. A. Alves Jr, S. Amato, S. Amerio, Y. Amhis, L. An, L. Anderlini, J. Anderson, R. Andreassen, M. Andreotti, J. E. Andrews, R. B. Appleby, O. Aquines Gutierrez, F. Archilli, A. Artamonov, M. Artuso, E. Aslanides, G. Auriemma, M. Baalouch, S. Bachmann, J. J. Back, A. Badalov, V. Balagura, W. Baldini, R. J. Barlow, C. Barschel, S. Barsuk, W. Barter, V. Batozskaya, Th. Bauer, A. Bay, L. Beaucourt, J. Beddow, F. Bedeschi, I. Bediaga, S. Belogurov, K. Belous, I. Belyaev, E. Ben-Haim, G. Bencivenni, S. Benson, J. Benton, A. Berezhnoy, R. Bernet, M. -O. Bettler, M. van Beuzekom, A. Bien, S. Bifani, T. Bird, A. Bizzeti, P. M. Bjørnstad, T. Blake, F. Blanc, J. Blouw, S. Blusk, V. Bocci, A. Bondar, N. Bondar, W. Bonivento, S. Borghi, A. Borgia, M. Borsato, T. J. V. Bowcock, E. Bowen, C. Bozzi, T. Brambach, J. van den Brand, J. Bressieux, D. Brett, M. Britsch, T. Britton, N. H. Brook, H. Brown, A. Bursche, G. Busetto, J. Buytaert, S. Cadeddu, R. Calabrese, M. Calvi, M. Calvo Gomez, A. Camboni, P. Campana, D. Campora Perez, A. Carbone, G. Carboni, R. Cardinale, A. Cardini, H. Carranza-Mejia, L. Carson, K. Carvalho Akiba, G. Casse, L. Cassina, L. Castillo Garcia, M. Cattaneo, Ch. Cauet, R. Cenci, M. Charles, Ph. Charpentier, S. -F. Cheung, N. Chiapolini, M. Chrzaszcz, K. Ciba, X. Cid Vidal, G. Ciezarek, P. E. L. Clarke, M. Clemencic, H. V. Cliff, J. Closier, V. Coco, J. Cogan, E. Cogneras, P. Collins, A. Comerma-Montells, A. Contu, A. Cook, M. Coombes, S. Coquereau, G. Corti, M. Corvo, I. Counts, B. Couturier, G. A. Cowan, D. C. Craik, M. Cruz Torres, S. Cunliffe, R. Currie, C. D’Ambrosio, J. Dalseno, P. David, P. N. Y. David, A. Davis, K. De Bruyn, S. De Capua, M. De Cian, J. M. De Miranda, L. De Paula, W. De Silva, P. De Simone, D. Decamp, M. Deckenhoff, L. Del Buono, N. Déléage, D. Derkach, O. Deschamps, F. Dettori, A. Di Canto, H. Dijkstra, S. Donleavy, F. Dordei, M. Dorigo, A. Dosil Suárez, D. Dossett, A. Dovbnya, F. Dupertuis, P. Durante, R. Dzhelyadin, A. Dziurda, A. Dzyuba, S. Easo, U. Egede, V. Egorychev, S. Eidelman, S. Eisenhardt, U. Eitschberger, R. Ekelhof, L. Eklund, I. El Rifai, Ch. Elsasser, S. Ely, S. Esen, T. Evans, A. Falabella, C. Färber, C. Farinelli, N. Farley, S. Farry, D. Ferguson, V. Fernandez Albor, F. Ferreira Rodrigues, M. Ferro-Luzzi, S. Filippov, M. Fiore, M. Fiorini, M. Firlej, C. Fitzpatrick, T. Fiutowski, M. Fontana, F. Fontanelli, R. Forty, O. Francisco, M. Frank, C. Frei, M. Frosini, J. Fu, E. Furfaro, A. Gallas Torreira, D. Galli, S. Gallorini, S. Gambetta, M. Gandelman, P. Gandini, Y. Gao, J. Garofoli, J. Garra Tico, L. Garrido, C. Gaspar, R. Gauld, L. Gavardi, E. Gersabeck, M. Gersabeck, T. Gershon, Ph. Ghez, A. Gianelle, S. Giani’, V. Gibson, L. Giubega, V. V. Gligorov, C. Göbel, D. Golubkov, A. Golutvin, A. Gomes, H. Gordon, C. Gotti, M. Grabalosa Gándara, R. Graciani Diaz, L. A. Granado Cardoso, E. Graugés, G. Graziani, A. Grecu, E. Greening, S. Gregson, P. Griffith, L. Grillo, O. Grünberg, B. Gui, E. Gushchin, Yu. Guz, T. Gys, C. Hadjivasiliou, G. Haefeli, C. Haen, S. C. Haines, S. Hall, B. Hamilton, T. Hampson, X. Han, S. Hansmann-Menzemer, N. Harnew, S. T. Harnew, J. Harrison, T. Hartmann, J. He, T. Head, V. Heijne, K. Hennessy, P. Henrard, L. Henry, J. A. Hernando Morata, E. van Herwijnen, M. Heß, A. Hicheur, D. Hill, M. Hoballah, C. Hombach, W. Hulsbergen, P. Hunt, N. Hussain, D. Hutchcroft, D. Hynds, M. Idzik, P. Ilten, R. Jacobsson, A. Jaeger, J. Jalocha, E. Jans, P. Jaton, A. Jawahery, M. Jezabek, F. Jing, M. John, D. Johnson, C. R. Jones, C. Joram, B. Jost, N. Jurik, M. Kaballo, S. Kandybei, W. Kanso, M. Karacson, T. M. Karbach, M. Kelsey, I. R. Kenyon, T. Ketel, B. Khanji, C. Khurewathanakul, S. Klaver, O. Kochebina, M. Kolpin, I. Komarov, R. F. Koopman, P. Koppenburg, M. Korolev, A. Kozlinskiy, L. Kravchuk, K. Kreplin, M. Kreps, G. Krocker, P. Krokovny, F. Kruse, M. Kucharczyk, V. Kudryavtsev, K. Kurek, T. Kvaratskheliya, V. N. La Thi, D. Lacarrere, G. Lafferty, A. Lai, D. Lambert, R. W. Lambert, E. Lanciotti, G. Lanfranchi, C. Langenbruch, B. Langhans, T. Latham, C. Lazzeroni, R. Le Gac, J. van Leerdam, J. -P. Lees, R. Lefèvre, A. Leflat, J. Lefrançois, S. Leo, O. Leroy, T. Lesiak, B. Leverington, Y. Li, M. Liles, R. Lindner, C. Linn, F. Lionetto, B. Liu, G. Liu, S. Lohn, I. Longstaff, J. H. Lopes, N. Lopez-March, P. Lowdon, H. Lu, D. Lucchesi, H. Luo, A. Lupato, E. Luppi, O. Lupton, F. Machefert, I. V. Machikhiliyan, F. Maciuc, O. Maev, S. Malde, G. Manca, G. Mancinelli, M. Manzali, J. Maratas, J. F. Marchand, U. Marconi, C. Marin Benito, P. Marino, R. Märki, J. Marks, G. Martellotti, A. Martens, A. Martín Sánchez, M. Martinelli, D. Martinez Santos, F. Martinez Vidal, D. Martins Tostes, A. Massafferri, R. Matev, Z. Mathe, C. Matteuzzi, A. Mazurov, M. McCann, J. McCarthy, A. McNab, R. McNulty, B. McSkelly, B. Meadows, F. Meier, M. Meissner, M. Merk, D. A. Milanes, M. -N. Minard, N. Moggi, J. Molina Rodriguez, S. Monteil, D. Moran, M. Morandin, P. Morawski, A. Mordà, M. J. Morello, J. Moron, R. Mountain, F. Muheim, K. Müller, R. Muresan, M. Mussini, B. Muster, P. Naik, T. Nakada, R. Nandakumar, I. Nasteva, M. Needham, N. Neri, S. Neubert, N. Neufeld, M. Neuner, A. D. Nguyen, T. D. Nguyen, C. Nguyen-Mau, M. Nicol, V. Niess, R. Niet, N. Nikitin, T. Nikodem, A. Novoselov, A. Oblakowska-Mucha, V. Obraztsov, S. Oggero, S. Ogilvy, O. Okhrimenko, R. Oldeman, G. Onderwater, M. Orlandea, J. M. Otalora Goicochea, P. Owen, A. Oyanguren, B. K. Pal, A. Palano, F. Palombo, M. Palutan, J. Panman, A. Papanestis, M. Pappagallo, C. Parkes, C. J. Parkinson, G. Passaleva, G. D. Patel, M. Patel, C. Patrignani, A. Pazos Alvarez, A. Pearce, A. Pellegrino, M. Pepe Altarelli, S. Perazzini, E. Perez Trigo, P. Perret, M. Perrin-Terrin, L. Pescatore, E. Pesen, K. Petridis, A. Petrolini, E. Picatoste Olloqui, B. Pietrzyk, T. Pilař, D. Pinci, A. Pistone, S. Playfer, M. Plo Casasus, F. Polci, A. Poluektov, E. Polycarpo, A. Popov, D. Popov, B. Popovici, C. Potterat, A. Powell, J. Prisciandaro, A. Pritchard, C. Prouve, V. Pugatch, A. Puig Navarro, G. Punzi, W. Qian, B. Rachwal, J. H. Rademacker, B. Rakotomiaramanana, M. Rama, M. S. Rangel, I. Raniuk, N. Rauschmayr, G. Raven, S. Reichert, M. M. Reid, A. C. dos Reis, S. Ricciardi, A. Richards, M. Rihl, K. Rinnert, V. Rives Molina, D. A. Roa Romero, P. Robbe, A. B. Rodrigues, E. Rodrigues, P. Rodriguez Perez, S. Roiser, V. Romanovsky, A. Romero Vidal, M. Rotondo, J. Rouvinet, T. Ruf, F. Ruffini, H. Ruiz, P. Ruiz Valls, G. Sabatino, J. J. Saborido Silva, N. Sagidova, P. Sail, B. Saitta, V. Salustino Guimaraes, C. Sanchez Mayordomo, B. Sanmartin Sedes, R. Santacesaria, C. Santamarina Rios, E. Santovetti, M. Sapunov, A. Sarti, C. Satriano, A. Satta, M. Savrie, D. Savrina, M. Schiller, H. Schindler, M. Schlupp, M. Schmelling, B. Schmidt, O. Schneider, A. Schopper, M. -H. Schune, R. Schwemmer, B. Sciascia, A. Sciubba, M. Seco, A. Semennikov, K. Senderowska, I. Sepp, N. Serra, J. Serrano, L. Sestini, P. Seyfert, M. Shapkin, I. Shapoval, Y. Shcheglov, T. Shears, L. Shekhtman, V. Shevchenko, A. Shires, R. Silva Coutinho, G. Simi, M. Sirendi, N. Skidmore, T. Skwarnicki, N. A. Smith, E. Smith, E. Smith, J. Smith, M. Smith, H. Snoek, M. D. Sokoloff, F. J. P. Soler, F. Soomro, D. Souza, B. Souza De Paula, B. Spaan, A. Sparkes, F. Spinella, P. Spradlin, F. Stagni, S. Stahl, O. Steinkamp, O. Stenyakin, S. Stevenson, S. Stoica, S. Stone, B. Storaci, S. Stracka, M. Straticiuc, U. Straumann, R. Stroili, V. K. Subbiah, L. Sun, W. Sutcliffe, K. Swientek, S. Swientek, V. Syropoulos, M. Szczekowski, P. Szczypka, D. Szilard, T. Szumlak, S. T’Jampens, M. Teklishyn, G. Tellarini, F. Teubert, C. Thomas, E. Thomas, J. van Tilburg, V. Tisserand, M. Tobin, S. Tolk, L. Tomassetti, D. Tonelli, S. Topp-Joergensen, N. Torr, E. Tournefier, S. Tourneur, M. T. Tran, M. Tresch, A. Tsaregorodtsev, P. Tsopelas, N. Tuning, M. Ubeda Garcia, A. Ukleja, A. Ustyuzhanin, U. Uwer, V. Vagnoni, G. Valenti, A. Vallier, R. Vazquez Gomez, P. Vazquez Regueiro, C. Vázquez Sierra, S. Vecchi, J. J. Velthuis, M. Veltri, G. Veneziano, M. Vesterinen, B. Viaud, D. Vieira, M. Vieites Diaz, X. Vilasis-Cardona, A. Vollhardt, D. Volyanskyy, D. Voong, A. Vorobyev, V. Vorobyev, C. Voß, H. Voss, J. A. de Vries, R. Waldi, C. Wallace, R. Wallace, J. Walsh, S. Wandernoth, J. Wang, D. R. Ward, N. K. Watson, D. Websdale, M. Whitehead, J. Wicht, D. Wiedner, G. Wilkinson, M. P. Williams, M. Williams, F. F. Wilson, J. Wimberley, J. Wishahi, W. Wislicki, M. Witek, G. Wormser, S. A. Wotton, S. Wright, S. Wu, K. Wyllie, Y. Xie, Z. Xing, Z. Xu, Z. Yang, X. Yuan, O. Yushchenko, M. Zangoli, M. Zavertyaev, F. Zhang, L. Zhang, W. C. Zhang, Y. Zhang, A. Zhelezov, A. Zhokhov, L. Zhong, & A. Zvyagin (2014). Measurement of the resonant and CP components in
$\overline{B}^0\rightarrow J/ψπ^+π^-$ decays arXiv arXiv: 1404.5673v2
Irinel Caprini, Gilberto Colangelo, & Heinrich Leutwyler (2005). Mass and width of the lowest resonance in QCD Phys.Rev.Lett.96:132001,2006 arXiv: hep-ph/0512364v2
Jaffe, R. (1977). Multiquark hadrons. I. Phenomenology of Q^{2}Q[over ¯]^{2} mesons Physical Review D, 15 (1), 267-280 DOI: 10.1103/PhysRevD.15.267
Jaffe, R. (1977). Multiquark hadrons. II. Methods Physical Review D, 15 (1), 281-289 DOI: 10.1103/PhysRevD.15.281
G. Mennessier, S. Narison, & X. -G. Wang (2010). The sigma and f_0(980) from K_e4+pi-pi, gamma-gamma scatterings, J/psi,
phi to gamma sigma_B and D_s to l nu sigma_B Nucl.Phys.Proc.Suppl.207-208:177-180,2010 arXiv: 1009.3590v1

Marco Frasca (2010). Glueball spectrum and hadronic processes in low-energy QCD Nucl.Phys.Proc.Suppl.207-208:196-199,2010 arXiv: 1007.4479v2

Advertisement

The question of X(3872)

13/10/2009

X(3872) is a resonance observed a few years ago at Belle and Tevatron and what hit immediately physicists imagination was that it has roughly two times the mass of D^0 meson. This would imply that it could be a neat example of hadron molecule being a combination of two couples of quarks. As you may know, there is a lot of activity in QCD to understand if tetraquarks exist or not and notable physicists are involved in this quest. Several proposals emerged showing how tetraquarks can be the answer to the spectrum of light unflavored mesons. X(3872) could be a particular tetraquark state with diquarks combining with a very low binding energy (about 0.25 MeV) forming a molecule. Whatever its nature, this resonance appears quite exotic indeed. But a recent paper (see here) sheds some light about what this particle cannot be. The authors derive some bounds on the production cross section of it showing that is not plausible to consider this particle as a diquark state. They carry on simulations of production of the resonance proving that is unlikely the formation in S-wave of a molecular D^0\bar D^{*0} state. The paper appeared in this days in Physical Review Letters (see here).

The interest arisen on this particle at the time makes important this article giving a significant clarification about the direction to take to have an understanding of its very nature.


A striking confirmation

17/04/2009

On arxiv today it is appeared a paper by Stephan Narison,  Gerard Mennessier and Robert Kaminski (see here). Stephan Narison is the organizer of QCD Conferences series and I attended one of this, QCD 08, last year. Narison is located in Montpellier (France) and, together with other researchers, is carrying out research aimed to an understanding of low-energy phenomenology of QCD. So, there is a strong overlapping between their work and mine. Their tools are QCD spectral sum rules and low energy theorems and the results they obtain are quite striking. Narison has written a relevant handbook of QCD (see here) that is a worthwhile tool for people aimed to work with this theory.

The paper gives further support to the idea that the resonance f0(600)/\sigma is indeed a glueball. Currently, researchers have explored another possibility, that this particle is a four quark state. Narison, Mennessier and Kaminski consider that, if this would be true, being this a state with u and d quarks, coupling with K mesons should be suppressed. This would imply that, in a computation for the rates of \sigma decays, the contribution coming in the case of K mesons in the final state should be really small. But, for a glueball state, these couplings for \pi\pi and KK decays should be almost the same.

Indeed, they get the following

|g^{os}_{\sigma\pi +\pi -}|\simeq 6 GeV, r_{\sigma\pi K}\equiv \frac{g^{os}_{\sigma K+K-}}{g^{os}_{\sigma\pi +\pi -}} \simeq 0.8

that is quite striking indeed. They do the same for f0(980) and, even if they get a similar result, they draw no conclusion about the nature of this resonance.

This, together with the small decay rate in \gamma\gamma, gives a really strong support to the conclusion that \sigma is indeed a glueball. At this stage, we would like to see an improved support from lattice computations. Surely, it is time to revise some theoretical computations of the gluon propagator.

Update: I have received the following correction to above deleted sentence by Stephan Narison. This is the right take:

One should take into account that the sigma to KK is suppressed due to phase space BUT the coupling to KK is very strong. The non-observation of sigma to KK has been the (main) motivation that it can be pi-pi or 4-quark states and nobody has payed attention to this (unobserved) decay.


Wonderful QCD!

28/11/2008

On Science this week appeared a milestone paper showing two great achievements by lattice QCD:

  • QCD gives a correct description of low energy phenomenology of strong interactions.
  • Most of the ordinary mass (99%) is due to the motion of quarks inside hadrons.

The precision reached has no precedent. The authors are able to get a control of involved  errors in such a way to reach an agreement of about 1% into the computation of nucleon masses. Frank Wilczek gives here a very readable account of these accomplishments and is worthwhile reading. These results open a new era into this kind of method to extract results to be compared with experiments for QCD and give an important confirmation to our understanding of strong interactions. But I would like to point out Wilczek’s concern: Until we will not have a theoretical way to obtain results from QCD in the low energy limit, we will miss a great piece of understanding of physics. This is a point that I discussed largely with my posts in this blog but it is worthwhile repeating here coming from such an authoritative voice.

An interesting point about these lattice computations can be made by observing that again no \sigma resonance is seen. I would like to remember that in these computations entered just u, d and s quarks as the authors’ aims were computations of bound states of such quarks. Some authoritative theoretical physicists are claiming that this resonance should be a tetraquark, that is a combination of u and d quarks and their antiparticles. What we can say about from our point of view? As I have written here some time ago, lattice computations of the gluon propagator in a pure Yang-Mills theory prove that this can be fitted with a Yukawa form

G(p)=\frac{A}{p^2+m^2}

being m\approx 500 MeV. This is given in Euclidean form. This kind of propagators says to us that the potential should be Yukawa-like, that is

V(r)=-A\frac{e^{-mr}}{r}

if this is true no tetraquark state can exist for lighter quarks. The reason is that a Yukawa-like potential heavily damps any van der Waals kind of residual potential. But, due to asymptotic freedom, this is no more true for heavier quarks c and b  as in this case the potential is Coulomb-like and, indeed, such kind of states could have been seen at Tevatron.

We expect that the glueball spectrum should display itself in the observed hadronic spectrum. This means that a major effort in lattice QCD computations should be aimed in this direction now that such a deep understanding of known hadronic states has been reached.


%d bloggers like this: