Cracks in the Witten’s index theorem?

18/06/2019

In these days, a rather interesting paper (see here for the preprint) appeared on Physical Review Letters. These authors study a Wess-Zumino model for {\cal N}=1, the prototype of any further SUSY model, and show that there exists an anomaly at one loop in perturbation theory that breaks supersymmetry. This is rather shocking as the model is supersymmetric at the classical level and, in agreement with Witten’s index theorem, no breaking of supersymmetry should ever be observed. Indeed, the authors, in the conclusions, correctly ask how the Witten’s theorem copes with this rather strange behavior. Of course, Witten’s theorem is correct and the question comes out naturally and is very much interesting for further studies.

This result is important as I have incurred in a similar situation for the Wess-Zumino model in a couple of papers. The first one (see here and here)  went published and shows how the classical Wess-Zumino model, in a strong coupling regime, breaks supersymmetry. Therefore, I asked a similar question as for the aforementioned case: How quantum corrections recover the Witten’s theorem? The second one is remained a preprint (see here). I tried to send it to Physics Letters B but the referee, without any check of mathematics, just claimed that there was the Witten’s theorem to forbid my conclusions. The Editor asked me to withdraw the paper in view of this identical reason. This was a very strong one. So, I never submited this paper again and just checked the classical case where I was more lucky.

So, my question is still alive: Has supersymmetry in itself the seeds of its breaking?

This is really important in view of the fact that the Minimal Supersymmetric Standard Model (MSSM), now in disgrace after LHC results, can have a dark side in its soft supersymmetry breaking sector. This, in turn, could entail a wrong understanding of where the superpartners could be after the breaking. Anyway, it is really something exciting already at the theoretical level. We are just stressing Witten’s index theorem in search for answers.

Advertisement

That strange behavior of supersymmetry…

07/12/2013

ResearchBlogging.org

I am a careful reader of scientific literature and an avid searcher for already published material in peer reviewed journals. Of course, arxiv is essential to accomplish this task and to satisfy my needs for reading. In these days, I am working on Dyson-Schwinger equations. I have written on this a paper (see here) a few years ago but this work is in strong need to be revised. Maybe, some of these days I will take the challenge. Googling around and looking for the Dyson-Schwinger equations applied to the well-known supersymmetric model due to Wess and Zumino, I have uncovered a very exciting track of research that uses Dyson-Schwinger equations to produce exact results in quantum field theory. The paper I have got was authored by Marc Bellon, Gustavo Lozano and Fidel Schaposnik and can be found here. These authors get the Dyson-Schwinger equations for the Wess-Zumino model at one loop and manage to compute the self-energies of the involved fields: A scalar, a fermion and an auxiliary bosonic field. Their equations are yielded for three different self-energies, different for each field. Self-energies are essential in quantum field theory as they introduce corrections to masses in a propagator and so enters into the physical part of an object that is not an observable.

Now, if you are in a symmetric theory like the Wess-Zumino model, such a symmetry, if it is not broken, will yield equal masses to all the components of the multiplet entering into the theory. This means that if you start with the assumption that in this case all the self-energies are equal, you are doing a consistent approximation. This is what Bellon, Lozano and Schaposnik just did. They assumed from the start that all the self-energies are equal for the Dyson Schwinger equations they get and go on with their computations. This choice leaves an open question: What if do I choose different self-energies from the start? Will the Dyson-Schwiner equations drive the solution toward the symmetric one?

This question is really interesting as the model considered is not exactly the one that Witten analysed in his famous paper  on 1982 on breaking of a supersymmetry (you can download his paper here). Supersymmetric model generates non-linear terms and could be amenable to spontaneous symmetry breaking, provided the Witten index has the proper values. The question I asked is strongly related to the idea of a supersymmetry breaking at the bootstrap: Supersymmetry is responsible for its breaking.

So, I managed to numerically solve Dyson-Schwinger equations for the Wess-Zumino model as yielded by Bellon, Lozano and Schaposnik and presented the results in a paper (see here). If you solve them assuming from the start all the self-energies are equal you get the following figure for coupling running from 0.25 to 100 (weak to strong):

All equal self-energies for the Wess-Zumino model

It does not matter the way you modify your parameters in the Dyson-Schwinger equations. Choosing them all equal from the start makes them equal forever. This is a consistent choice and this solution exists. But now, try to choose all different self-energies. You will get the following figure for the same couplings:

Not all equal self-energies for the Wess-Zumino model

This is really nice. You see that exist also solutions with all different self-energies and supersymmetry may be broken in this model. This kind of solutions has been missed by the authors. What one can see here is that supersymmetry is preserved for small couplings, even if we started with all different self-energies, but is broken as the coupling becomes stronger. This result is really striking and unexpected. It is in agreement with the results presented here.

I hope to extend this analysis to more mundane theories to analyse behaviours that are currently discussed in literature but never checked for. For these aims there are very powerful tools developed for Mathematica by Markus Huber, Jens Braun and Mario Mitter to get and numerically solve Dyson-Schwinger equations: DoFun anc CrasyDSE (thanks to Markus Huber for help). I suggest to play with them for numerical explorations.

Marc Bellon, Gustavo S. Lozano, & Fidel A. Schaposnik (2007). Higher loop renormalization of a supersymmetric field theory Phys.Lett.B650:293-297,2007 arXiv: hep-th/0703185v1

Edward Witten (1982). Constraints on Supersymmetry Breaking Nuclear Physics B, 202, 253-316 DOI: 10.1016/0550-3213(82)90071-2

Marco Frasca (2013). Numerical study of the Dyson-Schwinger equations for the Wess-Zumino
model arXiv arXiv: 1311.7376v1

Marco Frasca (2012). Chiral Wess-Zumino model and breaking of supersymmetry arXiv arXiv: 1211.1039v1

Markus Q. Huber, & Jens Braun (2011). Algorithmic derivation of functional renormalization group equations and
Dyson-Schwinger equations Computer Physics Communications, 183 (6), 1290-1320 arXiv: 1102.5307v2

Markus Q. Huber, & Mario Mitter (2011). CrasyDSE: A framework for solving Dyson-Schwinger equations arXiv arXiv: 1112.5622v2


The Witten’s paradox

17/08/2013

ResearchBlogging.org

Edward Witten is one of the greatest living physicists and also ranks high with mathematicians. He set the agenda for theoretical physics in several areas of research. He is mostly known for championing string theory and being one of few people that revolutionized the field. One of his major contributions to supersymmetry has been a deep understanding of its breaking. In a pair of famous papers (here and here) he put the foundations to our current understanding on the way supersymmetry can break and introduced the well-known Witten index. If a supersymmetric theory breaks supersymmetry then its Witten index is 0. This index is generally very difficult to compute and only perturbative or lattice computations can come to rescue. An important conclusion from Witten’s paper is that the well-known Wess-Zumino model in four dimensions does not break supersymmetry. Witten could rigorously justify this conclusion at small coupling but, at that time, an approach for strong coupling was missing and here Maldacena conjecture cannot help. Anyhow, he concluded that this should be true also for a strongly coupled Wess-Zumino model. Checks to this model in such a regime are rare. After I submitted a paper on arxiv last year (see here) I become aware of an attempt using Dyson-Schwinger equations that confirmed Witten conclusions for small coupling (see here). I have had an interesting mail exchange with one of the authors and this seems a promising approach, given authors’ truncation of Dyson-Schwinger hierarchy. Other approaches consider the Wess-Zumino model in two dimensions on the lattice. So, this appears a rather unexplored area , given the difficulties to cope with a strongly coupled theory, and Witten’s words appear like nails on a coffin to this theory.

I have worked out a lot of techniques to cope with strongly coupled theories and everywhere there is a perturbation going to infinity in a differential equation of any kind and so, I applied these ideas also to this famous model of supersymmetry. The idea is to prove that “supersymmetry has inside itself the seeds of its breaking“. The real issue at stake here is a correct understanding of the way supersymmetry breaks and recover in this way models that now appear to be defeated by data from LHC simply because the idea of symmetry breaking must be applied differently.

Of course, I do not aim to present a claim against the beautiful results given by Witten decades ago but just open up an interesting scientific question. So, considering that the Wess-Zumino model is just a theory of two scalar fields coupled to a Majorana spinor, its equations can be treated classically and so solved both for a strong and a weak coupling limit. I did this in a paper of mine (see here) and this paper has been accepted in these days in the Journal of Nonlinear Mathematical Physics as a letter. The classical solutions contradict the expectations giving a surviving of the supersymmetry at small coupling (as expected from Witten index for the quantum theory) while this does not happen for a strong coupling (formal limit of the coupling going to infinity). This is  a paradox, the Witten paradox, because classical solutions seem to break supersymmetry while the quantum theory does not.  So, we are left with a deep question: How is supersymmetry recovered by quantum corrections?

Marco Frasca (2012). Chiral Wess-Zumino model and breaking of supersymmetry arXiv arXiv: 1211.1039v1

A. Bashir, & J. Lorenzo Diaz-Cruz (1999). A study of Schwinger-Dyson Equations for Yukawa and Wess-Zumino Models J.Phys.G25:1797-1805,1999 arXiv: hep-ph/9906360v1

Marco Frasca (2012). Classical solutions of a massless Wess-Zumino model arXiv arXiv: 1212.1822v2


%d bloggers like this: