Low energy limit of QCD and the
emerging of confinement

Marco Frasca

marcofrasca@ mclink.it

QCD 12, Montpellier, July 2-7, 2012




EPIan of the talk

¢ Classical field theory
¢ Scalar field theory
® Yang-Mills theory
® Yang-Mills Green function

® Quantum field theory
¢ Scalar field theory
® Yang-Mills theory
® QCD in the infrared limit
® Bosonization
¢ Instantons
® o mass
¢ Confinement

® Conclusions

Low energy limit of QCD and the emerging of confinement — p. 2/25




-Classical field theory: Scalar field

® A classical field theory for a massless scalar field is given by

O¢ + A\¢° = j
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-Classical field theory: Scalar field

® A classical field theory for a massless scalar field is given by
06+ A\¢” = j
® The homogeneous equation can be solved exactly by

1
¢:’“‘<§>4 sn(p -« +0,1)
being sn an elliptic Jacobi function and p and 6 two constant. This solution

holds provided the following dispersion relation holds

P = 1?2
2

S0 this solution represents a free massive solution notwithstanding we started
from a massless theory.
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-Classical field theory: Scalar field

® A classical field theory for a massless scalar field is given by
06+ A\¢” = j
® The homogeneous equation can be solved exactly by

1
s=p(5) snlp-z+0,)
being sn an elliptic Jacobi function and p and 6 two constant. This solution

holds provided the following dispersion relation holds

P = 1?2
2

S0 this solution represents a free massive solution notwithstanding we started
from a massless theory.

® Mass arises from the nonlinearities when )\ is taken to be finite rather than
going to zero.
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-Classical field theory: Scalar field

® When there is a current we ask for a solution in the limit A — oo as our aim Is to
understand a strong coupling limit. So, we check a solution

S K}/d4£€,G(£U —az')j(z) + 66

being d¢ all higher order corrections.
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-Classical field theory: Scalar field

® When there is a current we ask for a solution in the limit A — oo as our aim Is to
understand a strong coupling limit. So, we check a solution

S K,/d4x’G(x —az')j(z) + 66

being d¢ all higher order corrections.

® One can prove that this is indeed so provided
op = KQ)\/d4$/d4$,,G(x — 2 )[G(z' — x”)]3j(33’) + O(j(az)g)

with the identification x = u, the same of the exact solution, and
0G(x — ') + N[G(z — 2")]° = p 1ot (x — &),




-Classical field theory: Scalar field

® When there is a current we ask for a solution in the limit A — oo as our aim Is to
understand a strong coupling limit. So, we check a solution

S K}/d4$,G($ —az')j(z) + 66

being d¢ all higher order corrections.

® One can prove that this is indeed so provided
op = Kz2)\/d4az/d4x”G(x — 2 )[G(z' — a:”)]?’j(x’) + O(j(az)g)

with the identification x = u, the same of the exact solution, and
0G(x — ') + N[G(z — 2")]° = p 1ot (x — &),

® This implies that the corresponding quantum field theory, in a very strong
coupling limit, takes a Gaussian form and is trivial (triviality of the scalar field
theory in the infrared limit).
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-Classical field theory: Scalar field

When there is a current we ask for a solution in the limit A — oo as our aim is to
understand a strong coupling limit. So, we check a solution

S m/d4x’G(x —az')j(z) + 66

being é¢ all higher order corrections.

One can prove that this is indeed so provided
5 = K2\ / d*2'd*2" Gz — )G — 2% () + O3(z)?)

with the identification x = u, the same of the exact solution, and
0G(x — ') + N[G(z — 2")]° = p 1ot (x — &),

This implies that the corresponding quantum field theory, in a very strong
coupling limit, takes a Gaussian form and is trivial (triviality of the scalar field
theory in the infrared limit).

All we need now is to find the exact form of the propagator G(z — ') and we
have completely solved the classical theory for the scalar field in a strong
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-Classical field theory: Scalar field

® In order to solve the equation
/ N3 . —1 4 /
OG(x—x )+ ANGz—2)]=p 6§ (x—x)

we can start fromthe d = 1+ 0 case 87 Go(t — t') + A[Go(t — t")]> = p?6(t — t').
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-Classical field theory: Scalar field

® In order to solve the equation
0G(z — 2') + N[G(z — 2')]° = ,u_154(a: — ')

we can start fromthe d = 1+ 0 case 87 Go(t — t') + A[Go(t — t")]> = p?6(t — t').
® It is straightforwardly obtained the Fourier transformed solution

00 2 (_l)ne—(n—l—%)w 1
KQ(’L) 1+ e @n+D)m (,2 ;2 4 e

1
being mn = (2n + 1) 575 (%)* pand K(i) ~ 1.3111028777 an elliptic integral.
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-Classical field theory: Scalar field

® In order to solve the equation
0G(z — 2') + N[G(z — 2')]° = ,u_154(a: — ')

we can start fromthe d = 1+ 0 case 87 Go(t — t') + A[Go(t — t")]> = p?6(t — t').
® It is straightforwardly obtained the Fourier transformed solution

00 2 (_l)ne—(n-l—%)ﬂ 1

Go(W) 230(277/ + 1)K2( ) 1+ e— (Cn+)m )2 _ fm,% + 1€

being mn = (2n + 1) 575 (3 ) pand K (i) ~ 1.3111028777 an elliptic integral.

® We are able to recover the fully covariant propagator by boosting from the rest
reference frame obtaining finally

o 2 n_—(n+i)w
(—1)"e 2 1
Glp) = 20(2”“)K2() 1+ e-CniDr 2 —m2 e

This shows that our solution given above indeed represents a strong coupling

— OQ.
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ECIassicaI field theory: Yang-Mills field (1)

® A classical field theory for the Yang-Mills field is given by

018, AL — (1= 1) 0, (0" AL) £ P° AP (8, A —0, AL )+ f ™00 (AL AG)+g? fove fede APH AL A =—jo.

Low energy limit of QCD and the emerging of confinement — p. 6/25



;Classical field theory: Yang-Mills field (1)

® A classical field theory for the Yang-Mills field is given by
8“%143—(1—%)8u(8“AZ)+gf“bcAb“(8uAi—auAZ)Jrgf“”ca“(AZA2)+92f“”Cde6A”“AﬁA§=—j3-

® For the homogeneous equation, we want to study it in the formal limit ¢ — ~c.
We note that a class of exact solutions exists if we take the potential Aj; just
depending on time, after a proper selection of the components [see Smilga
(2001)]. These solutions are the same of the scalar field when spatial
coordinates are set to zero (rest frame).
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ECIassicaI field theory: Yang-Mills field (1)

® A classical field theory for the Yang-Mills field is given by
8“%142—(1—%)8u(8“AZ)+gf“”cAb“(8uAi—GVAZ)Jrgf“”Ca“(AZAi)+92f“”cf0deA”“AﬁAiz—jf}-

® For the homogeneous equation, we want to study it in the formal limit ¢ — ~c.
We note that a class of exact solutions exists if we take the potential Aj; just
depending on time, after a proper selection of the components [see Smilga
(2001)]. These solutions are the same of the scalar field when spatial
coordinates are set to zero (rest frame).

¢ Differently from the scalar field, we cannot just boost away these solutions to
get a general solution to Yang-Mills equations due to gauge symmetry. But we
can try to find a set of similar solutions with the proviso of a gauge choice.
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ECIassicaI field theory: Yang-Mills field (1)

A classical field theory for the Yang-Mills field is given by
0" 0, AL~ (1=1) 0, (0" A%)+gf P AP (8, AL — 8, AL ) +gf*Pe0H (AL AZ) g fobe fede AV A AC=—j0.

For the homogeneous equation, we want to study it in the formal limit ¢ — oc.
We note that a class of exact solutions exists if we take the potential Aj; just
depending on time, after a proper selection of the components [see Smilga
(2001)]. These solutions are the same of the scalar field when spatial
coordinates are set to zero (rest frame).

Differently from the scalar field, we cannot just boost away these solutions to
get a general solution to Yang-Mills equations due to gauge symmetry. But we
can try to find a set of similar solutions with the proviso of a gauge choice.

This kind of solutions will permit us to prove that a set of them exists supporting
a trivial infrared fixed point to build on a quantum field theory.
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ECIassicaI field theory: Yang-Mills field (2)

¢ Exactly as in the case of the scalar field we assume the following solution to
our field equations

= n/d4x/DZ,b/(:c — x/)jby(:c’) + 0 A,
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;Classical field theory: Yang-Mills field (2)

¢ Exactly as in the case of the scalar field we assume the following solution to
our field equations

= K,/d4$/DZ,b/($ — x/)jby(x’) + 0 A,
¢ Also in this case, apart from a possible correction, this boils down to an

expansion in powers of the currents as already guessed in the 80 [R. T. Cahill
and C. D. Roberts (1985)].
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;Classical field theory: Yang-Mills field (2)

¢ Exactly as in the case of the scalar field we assume the following solution to
our field equations

= m/d4x/DZ,b/(x — )% (@) + 0AY,

¢ Also in this case, apart from a possible correction, this boils down to an
expansion in powers of the currents as already guessed in the 80 [R. T. Cahill
and C. D. Roberts (1985)].

® This implies that the corresponding quantum theory, in a very strong coupling
limit, takes a Gaussian form and is trivial.
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ECIassicaI field theory: Yang-Mills field (2)

Exactly as in the case of the scalar field we assume the following solution to
our field equations

Al = K,/d433/DZ,b/($ — a:/)jby(x’) + 0A},

Also in this case, apart from a possible correction, this boils down to an
expansion in powers of the currents as already guessed in the 80 [R. T. Cahill
and C. D. Roberts (1985)].

This implies that the corresponding quantum theory, in a very strong coupling
limit, takes a Gaussian form and is trivial.

The crucial point, as already pointed out in the eighties [T. Goldman and R. W.
Haymaker (1981), T. Cahill and C. D. Roberts (1985)], is the exact
determination of the gluon propagator in the low-energy limit. This will
determine completely low-energy physics for strong interactions
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ECIassicaI field theory: Yang-Mills field (3)

® The guestion to ask is: Does a set of classical solutions exist for Yang-Mills
equations supporting a trivial infrared fixed point for the corresponding
guantum theory?
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;Classical field theory: Yang-Mills field (3)

® The guestion to ask is: Does a set of classical solutions exist for Yang-Mills
equations supporting a trivial infrared fixed point for the corresponding
guantum theory?

® The answer is yes! These solutions are instantons in the form A}, = n;¢ with
n, a set of constants and ¢ a scalar field.

Low energy limit of QCD and the emerging of confinement — p. 8/25



ECIassicaI field theory: Yang-Mills field (3)

® The guestion to ask is: Does a set of classical solutions exist for Yang-Mills
equations supporting a trivial infrared fixed point for the corresponding
guantum theory?

® The answer is yes! These solutions are instantons in the form A}, = n;¢ with
n, a set of constants and ¢ a scalar field.

® By direct substitution into Yang-Mills equations one recovers the equation for ¢
that is

000~ 7 (1- 1) 07 00+ N = i,

being j, = n,5"" and use has been made of the formula n"“n, = N? —1.
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ECIassicaI field theory: Yang-Mills field (3)

The question to ask is: Does a set of classical solutions exist for Yang-Mills
equations supporting a trivial infrared fixed point for the corresponding
guantum theory?

The answer is yes! These solutions are instantons in the form A}, = ;¢ with
n, a set of constants and ¢ a scalar field.

By direct substitution into Yang-Mills equations one recovers the equation for ¢
that is

N2 _1 £

being j, = n,j"" and use has been made of the formula n"“n; = N? —1.

OOy — ! (1 - 1) (n* - 0)°¢+ Ng°¢® = —jy

In the Landau gauge (Lorenz gauge classically) this equation is exactly that of
the scalar field given before and we get again a current expansion also for the
scalar field.
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ECIassicaI field theory: Yang-Mills field (3)

The question to ask is: Does a set of classical solutions exist for Yang-Mills
equations supporting a trivial infrared fixed point for the corresponding
guantum theory?

The answer is yes! These solutions are instantons in the form A}, = n;¢ with
n, a set of constants and ¢ a scalar field.

By direct substitution into Yang-Mills equations one recovers the equation for ¢
that is

N2 _1 £

being j, = n,j"" and use has been made of the formula n"“n; = N? —1.

OOy — ! (1 - 1) (n* - 0)°¢ + Ng°¢® = —jy

In the Landau gauge (Lorenz gauge classically) this equation is exactly that of
the scalar field given before and we get again a current expansion also for the
scalar field.

So, a set of solutions of the Yang-Mills equations exists supporting a trivial
Infrared fixed point. Our aim is to study the theory in this case.
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-Yang-Mills-Green function

® The instanton solutions given above permit us to write down immediately the

propagator for the Yang-Mills equations in the Landau gauge for SU(N) being
exactly the same given for the scalar field:

ab PupbPv (o%e) By
AL (P)=8an (v = P45* ) 220, p2—m%+ie+0(\/1ﬁg)
being IPENCREE RS SF:
Bn:(2n+1) K2 (i) 1+e— (@nt+1)m
and

2
mn:(2n—|—1)2£(i)<N29 ) A
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-Yang-Mills-Green function

® The instanton solutions given above permit us to write down immediately the
propagator for the Yang-Mills equations in the Landau gauge for SU(N) being
exactly the same given for the scalar field:

AZZ(p)chab (Uuu—pggy) =0 pZ_f@%+ie +O(x/1ﬁg)

bemg B —(9m1 2 (_1)n+1e—(n+%)7r
n=(2n+ )K2(,L-) lte—(2nFD)m

and

1
2\ 4
mn:(2n—|—1)2£(i) (Nzg ) A

® The constant A must be the same constant that appears in the ultraviolet limit
by dimensional transmutation, here arises as an integration constant [M.
Frasca, arXiv:1007.4479v2 [hep-ph]].




-Yang-Mills-Green function

® The instanton solutions given above permit us to write down immediately the
propagator for the Yang-Mills equations in the Landau gauge for SU(N) being
exactly the same given for the scalar field:

AZZ(p)chab (Uuu—pggy) =0 p2_i7%+7;e +O(x/1ﬁg)

bemg B —(9m1 2 (_1)n+16—(n+%)7r
n=(2n+ )Kz(i) lte—(2nFD)m

and

1
2\ 4
mn:(2n—|—1)2£(i) (Nzg ) A

® The constant A must be the same constant that appears in the ultraviolet limit
by dimensional transmutation, here arises as an integration constant [M.
Frasca, arXiv:1007.4479v2 [hep-ph]].

® This is the propagator of a massive field theory but the mass poles arise
dynamically from the non-linearities in the equations of motion. At this stage
we are working classically yet.
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ELattice computations

¢ Lattice computations support the existence of a trivial infrared fixed point for
Yang-Mills theory.
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-Lattice computations

¢ Lattice computations support the existence of a trivial infrared fixed point for
Yang-Mills theory.

® One has for the running coupling [l. L. Bogolubsky, E. M. llgenfritz, M.
Muller-Preussker, A. Sternbeck, PLB676, 69 (2009)]:

1.5 T T TTTTIT T T T TTTITT T T IIIIII| T T IIIHI| T T IIIIII|
- B=57 64 —=— -
804 F-o -4 4
= i
1.0 - -
N w =
i; = o
= £ <
0.5 & = _
= *
=
&
- Sy
L - 4
0-0 1 | IIIIIII 1 1 I\IlHl 1 1 lIIIII| 1 1 IIIHIl 1 1 IIIIII|
0.001 0.01 0.1 1 10 100

q¢° [GeV?]
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-Lattice computations

¢ Lattice computations support the existence of a trivial infrared fixed point for
Yang-Mills theory.

® One has for the running coupling [l. L. Bogolubsky, E. M. llgenfritz, M.
Muller-Preussker, A. Sternbeck, PLB676, 69 (2009)]:

1.5 T T TTTTIT T T T TTTITT T T lIIIIIl T T IIIHI| T T IIIIII|
r A=57 647 —=— -
80 - -4 A
= %
1.0 |- - —
& i o -
~ L = o
= L =
0.5 - - &= —
L - 5
& -
L - J
D-O 1 | IIIIIII 1 I\IlHl 1 1 lIIII!l 1 1 IIIHIl 1 1 IIIIII|
0.001 0.01 0.1 1 10 100

q¢° [GeV?]

¢ A similar result was also obtained by Boucaud et al. [“The strong coupling
constant at small momentum as an instanton detector “, JHEP 0304, 005

(2003)] again with lattice computations.
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-Quantum field theory: Scalar field (1)

® We can formulate a quantum field theory for the scalar field starting from the
generating functional

2[5 = / [de] exp [z / d'z (%(8@2 - 29! +j¢)] .
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-Quantum field theory: Scalar field (1)

® We can formulate a quantum field theory for the scalar field starting from the
generating functional

: : 1 A .
Z[j] = / [de] exp [z / d'z (5(8@2 -3¢ +J¢)] .
® We can rescale the space-time variable as x — v/ Az and rewrite the functional
as
1— Lt (Lo — Lot o L.
20 = [faslewn i3 [ a'e (300 - 10" + Sis) |

Then we can seek for a solution seriesas ¢ = >~ , A™ "¢, and rescale the
current j — j/X being this arbitrary.
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-Quantum field theory: Scalar field (1)

® We can formulate a quantum field theory for the scalar field starting from the
generating functional

2[5 = / [de] exp [z / d'z (%(%)Q - 29! +j¢)] .

® We can rescale the space-time variable as x — v/ Az and rewrite the functional

as
21j) = | dg)exo H [ e (5007 - Jo + %m)] .

Then we can seek for a solution seriesas ¢ = >~ , A™ "¢, and rescale the
current j — j/X being this arbitrary.

® 1t is not difficult to see that the leading order correction can be computed
solving the classical equation

Ogo + ¢g = j

that we already know how to manage. This is completely consistent with our

preceding formulation [M. Frasca (2006)] but now all is fully covariant. We are
] lassical theory.
Low energy limit of QCD and the emerging of confinement — p. 11/25




-Quantum field theory: Scalar field (2)

¢ Using the approximation holding at strong coupling
bo = ,u/d433G(zc — )i+ ...

it is not difficult to write the generating functional at the leading order in a
Gaussian form

Zolj] = exp [% /d4x/d4x"j(x/)G(x/ — M| .
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-Quantum field theory: Scalar field (2)

¢ Using the approximation holding at strong coupling
bo = ,u/d4asG(zc — )i+ ...

it is not difficult to write the generating functional at the leading order in a
Gaussian form

Zolj] = exp [% /d4x/d4x"j(x/)G(x/ — M| .

® This conclusion is really important: It says that the scalar field theory in d=3+1
IS trivial in the infrared limit!
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-Quantum field theory: Scalar field (2)

¢ Using the approximation holding at strong coupling
bo = ,u/d4a:G(zc — )i+ ...

it is not difficult to write the generating functional at the leading order in a
Gaussian form

Zolj] = exp [5 [ttt st - x”>j<x”>] .

® This conclusion is really important: It says that the scalar field theory in d=3+1
IS trivial in the infrared limit!

® This functional describes a set of free particles with a mass spectrum

mn = (2n + 1) 2—’?(2) (%) ’ 14

that are the poles of the propagator, the ones of the classical theory.
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-Quantum field theory: Yang-Mills field (1)

® We now use the mapping theorem fixing the form of the propagator in the
infrared, e.g. in the Landau gauge, as

ng(p)ZCsab(nuv_pﬁ;gy)Zfbo:O 2_Bn ) +O(\/1ﬁg)

but this can be recomputed in any gauge by the classical equations with the
mapping theorem.
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-Quantum field theory: Yang-Mills field (1)

® We now use the mapping theorem fixing the form of the propagator in the
infrared, e.g. in the Landau gauge, as

DZﬁ(p)chab(mv—ng”)Z?:o e ‘+O( 1 )

but this can be recomputed in any gauge by the classical equations with the
mapping theorem.

® The next step is to use the approximation that holds in a strong coupling limit

AZ:Afd4x/DZZ(x—x’)jb"(x’)—|—O(\/%g)—I—O(j?’)
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-Quantum field theory: Yang-Mills field (1)

® We now use the mapping theorem fixing the form of the propagator in the

infrared, e.g. in the Landau gauge, as

D&% (p)=bab (mw - pgglj ) 2 =0 P2 —f@%juie +0 ( Vlﬁg)

but this can be recomputed in any gauge by the classical equations with the
mapping theorem.

The next step is to use the approximation that holds in a strong coupling limit

A%=A [ d4x’DZZ(x—x’)jb"(x’)—|—O(\/%g)—I—O(j?’)

and we note that, in this approximation, the ghost field just decouples and
becomes free and one finally has at the leading order

Zo[j]:N exp[% f d4az’d4a:”ja“(w’)DZZ(:c’—:z:”)jb”(a:”)].

This functional describes free massive glueballs that are the proper states in
the infrared limit. Yang-Mills theory is trivial in the limit of the coupling going to
Infinity and we expect the running coupling to go to zero lowering energies.
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-Quantum field theory: Yang-Mills field (2)

® Now, we can take a look at the ghost part of the action. We just note that, for
this particular form of the propagator, inserting our approximation into the
action produces an action for a free ghost field.
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;Quantum field theory: Yang-Mills field (2)

® Now, we can take a look at the ghost part of the action. We just note that, for
this particular form of the propagator, inserting our approximation into the
action produces an action for a free ghost field.

® Indeed, we will have

Sy = /d z [c 9,0"c* + O (\/_g> +0 (j?’)]
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-Quantum field theory: Yang-Mills field (2)

® Now, we can take a look at the ghost part of the action. We just note that, for
this particular form of the propagator, inserting our approximation into the
action produces an action for a free ghost field.

® Indeed, we will have

Sy = /d z [c 9,0"c* + O (\/_g) +0 (j3>]

® A ghost propagator can be written down as

G“b(p):_p25+ +O(\/1_g)
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-Quantum field theory: Yang-Mills field (2)

Now, we can take a look at the ghost part of the action. We just note that, for
this particular form of the propagator, inserting our approximation into the
action produces an action for a free ghost field.

Indeed, we will have

Sy = /d z [c 9,0"c* + O (\/_g) +0 (j3>]

A ghost propagator can be written down as

Gap(p) = — Oat +O(\/1—g)

Our conclusion is that, in a strong coupling expansion 1/+/Ng, we get the so
called decoupling solution.
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-Quantum field theory: Yang-Mills field (3)

A direct comparison of our results with numerical Dyson-Schwinger equations

gives the following:

T
* Aguilar&Natale
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lar, A. Natale, JHEP 0408, 057 (2004)).
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* Aguilar&Natale
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-QCD at the infrared limit (1)

® When use is made of the infrared fixed point result, QCD action can be written
down quite easily.
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-QCD at the infrared limit (1)

® When use is made of the infrared fixed point result, QCD action can be written
down quite easily.

® Indeed, we will have for the gluon field

1 . v 1 -
Sgf = 5 /d4x/d4x” []“a(a:,)DZ,b,(x/ — CBN)] b(SC//) + O (Wg) + O (J3>]
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-QCD at the infrared limit (1)

® When use is made of the infrared fixed point result, QCD action can be written
down quite easily.

® Indeed, we will have for the gluon field

1 v —1 '
Sgr = 2 /d4az'd4$” [jua(xl)DZzb/(ﬂf/ — ")’ @") + 0 ( ) +0 (‘73)]

¢ and for the quark fields

. )\a a .V
&f=§:/ﬁ%ﬂ@)kﬂ—ﬂm—g¢“5 d'a' Djy (z — 2')"° (2)
q

a b
_2M)‘_ 4 r~ab 7 _/ />\_y// 1 (3)
g Q/deW@ w)EQ@)QVQ®)+O(——)+03

q/
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-QCD at the infrared limit (1)

® When use is made of the infrared fixed point result, QCD action can be written
down quite easily.

® Indeed, we will have for the gluon field

1 a a v —1 '
Sgf = 2 /d4az'd4$” [ju (CB,)Dmb/(ﬂf/ — ")’ @") + 0 ( ) +0 (JS)]

¢ and for the quark fields

Sq = Z/d4azcj(a:) [z@ —mg — g7 % d4a:/DZ,b/(:c — 2)7%(2)
q

/ A’ /
—927“—/6141719 ACEESDINAC: ') 59"d (2) + (\/—g)+0( ) q(x)

q/

® We recognize here an explicit Yukawa interaction and a Nambu-Jona-Lasinio

non-local term. Already at this stage we are able to recognize that NJL is the
proper low-energy limit for QCD at zero temperature.
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-QCD at the infrared limit (2)

® Now we operate the Smilga’s choice nfmﬁ = 8,(Nuw — pupv/p?) for the Landau
gauge.
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® Now we operate the Smilga’s choice 77,‘;"3772 = 8,(Nuw — pupv/p?) for the Landau

gauge.
® We are left with the infrared limit QCD using conservation of currents

Sy = 5 [ ate'd's |iE)aw - w0 (o) 1o (i)

¢ and for the quark fields

Sq = Z/d4xq(x) [z{ﬁ —mq — g7 )\7@ d4x’A(x — x’)jﬁ(w’)
q

/
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® Now we operate the Smilga’s choice nfmﬁ = 8,(Nuw — pupv/p?) for the Landau

gauge.
® We are left with the infrared limit QCD using conservation of currents

Sy = 5 [ ate'd's |iE)aw - w0 (o) 1o (i)

¢ and for the quark fields

$= 3 [ dteato) 18— mg - %y [ A - i)
q

_927“_/d ' A(x — 2) %: _'V,MQ (') + (\/_g>+0( ) ()

® We want to give explicitly the contributions from gluon resonances. In order to
do this, we introduce the bosonic currents jj;(x) = n,j(x) with the current j(x)
that of the gluonic excitations after mapping.
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-QCD at the infrared limit (3)

® Using the relation nn"* = 3(NZ — 1) we get in the end
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-QCD at the infrared limit (3)

® Using the relation nn"* = 3(NZ — 1) we get in the end

® and for the quark fields

Sq = Z / d*zq(z) [z@ — Mg — gnfﬁ“% d*z' Az — 2')j(2)
q

a
—927“% d'a' Az —2') Y d' (@) Fyd (') + O <—) +0(s)
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EQCD at the infrared limit (3)

® Using the relation nn"* = 3(NZ — 1) we get in the end

¢ and for the quark fields

Sq = Z / d*zq(z) [z@ — Mg — gnfﬁ“% d*z' Az — 2')j(2)

q()

2@ , , ¢ /
oty [ A=) S @)+ o) +o(i)

® Now, we recognize that the propagator is just a sum of Yukawa propagators
weighted by exponential damping terms. So, we introduce the ¢ field and
truncate at the first excitation. This is a somewhat rough approximation but will

be helpful in the following analysis.
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EQCD at the infrared limit (3)

® Using the relation nn"* = 3(NZ — 1) we get in the end

¢ and for the quark fields

Sq = Z / d433q_(a:) [z@ —mg — gnfﬁ“% d4:c/A(x —z')j(z")

N . W AY / ( )
%y [ate s - S @)+ 0 () +0 (i) | a
q
® Now, we recognize that the propagator is just a sum of Yukawa propagators
weighted by exponential damping terms. So, we introduce the ¢ field and
truncate at the first excitation. This is a somewhat rough approximation but will

be helpful in the following analysis.
® This means the we can write the bosonic currents contribution as coming from

' i o(x) = /3(NZ —1)/Bg [ d*2’ Az —2')j(a").
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EQCD at the infrared limit (4)

¢ So, the model we consider for our finite temperature analysis, directly derived
from QCD, Is [Weise et al., Phys. Rev. D79, 014022 (2009), arXiv:0810.1099v2 [hep-ph]]

So = /d4a: {%(80)2 — %m%aﬂ

Low energy limit of QCD and the emerging of confinement — p. 19/25




EQCD at the infrared limit (4)

¢ So, the model we consider for our finite temperature analysis, directly derived
from QCD, Is [Weise et al., Phys. Rev. D79, 014022 (2009), arXiv:0810.1099v2 [hep-ph]]

So = /d4a;’ {%(80)2 — %m%aﬂ

¢ and for the quark fields

Sq = d*zq(x) [i@—m -9 o My A—&0(33)
! Zq:/ ’ \/3(Ng_1) .

A A _
_927“7 d4a:’A(a: — a:/) q’(x/)7vuq/(x/) + 0 (—) + 0 (]3> q(x)

/
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EQCD at the infrared limit (4)

¢ So, the model we consider for our finite temperature analysis, directly derived
from QCD, Is [Weise et al., Phys. Rev. D79, 014022 (2009), arXiv:0810.1099v2 [hep-ph]]

So = /d433 {%(00)2 — %m%aﬂ

¢ and for the quark fields

Sq = d*zq(x) [i@—m -9 o My A—&0(33)
! Zq:/ ’ \/3(Ng_1) .

—92'7“)‘; d*2' Az —2')) 7 (z )%G’YMC]( ")+ (\/—g)+0( ) q(w)

q/

®  Now, we recover the non-local model of Weise et al. directly from QCD (25 (0) = G is the standard NJL
coupling)
B,
5p) = ——g Zop 2 —(2n+4+ 1)2(w/2K(i))2%0 + ie

= Cew

with €(0) = 1 fixing in this way the value of G using the gluon propagator.
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-Bosonization

® We move to an Euclidean action and define the following fields
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-Bosonization

® We move to an Euclidean action and define the following fields

¢ So, the bosonic action will be, after taking the expansion around the v.e.v.
Qba, — (Ua 0)1

Sp = /d% [%(350)2 - %m%(éa)Q +Syp+S? 4.
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® We move to an Euclidean action and define the following fields

¢ So, the bosonic action will be, after taking the expansion around the v.e.v.

Qba,:(’l),O),
_ 4 1 2 1 o o (9 (2)
Sp = [ d*a [5(850) ~ S mp(80) ] + Sy 4S5 4

¢ being
4 2

d v
Smr/Va= —QNNf/@—ﬂ_pllln [pQ —I—MQ(p)} + 20 ff.
e




-Bosonization

We move to an Euclidean action and defi

ne the following fields

So, the bosonic action will be, after taking the expansion around the v.e.v.

¢a(z) = (0o
GPa = (’U,O),
Sp = /d4x [%(850)2 — %m%
being

4

d
SMF/V4 = —QNNf/—pélln [pQ —|—M2(p)} +

(27

(50)2} +Syp+S? 4.

?}2

QGeff .

This holds together with the gap equations

M (p) = mq

d4p

+ C(p)v

M (p)

=G5y [ e

1
_W

< G due to the mass gap my.
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-Instanton liquid

® For aims of completeness, we give here a comparison of our gluon propagator
(the form factor) with the one used in Weise et al. based on an instanton liquid
model and the one derived for an instanton liquid [T. Schafer and E. V.
Shuryak, Rev. Mod. Phys. 70, 323 (1998)].
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® For aims of completeness, we give here a comparison of our gluon propagator
(the form factor) with the one used in Weise et al. based on an instanton liquid
model and the one derived for an instanton liquid [T. Schafer and E. V.

Shuryak, Rev. Mod. Phys. 70, 323 (1998)].

® This iIs the result;

T
Weise&al.
----- Frasca

= = = |nstantons

-
-t e o
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-Instanton liquid

® For aims of completeness, we give here a comparison of our gluon propagator
(the form factor) with the one used in Weise et al. based on an instanton liquid
model and the one derived for an instanton liquid [T. Schafer and E. V.

Shuryak, Rev. Mod. Phys. 70, 323 (1998)].

® This iIs the result;

T
Weise&al.
————— Frasca

= = = |nstantons

-
-t e o

¢ Istanton liquid approximation is a good one indeed in describing the ground




.0 mass

* In NJL ¢ mass is given by m, = v/4m*2 + m2 being m* the quark constituent
mass obtained from the gap equation of the model. In our case we have
m* = 214 MeV and m, = 139.7 MeV with a 4d cut-off.
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* In NJL ¢ mass is given by m, = v/4m*2 + m2 being m* the quark constituent
mass obtained from the gap equation of the model. In our case we have
m* = 214 MeV and m, = 139.7 MeV with a 4d cut-off.

¢ Analysis on experimental data gives for this particle [Caprini, Colangelo,
Leutwyler, PRL 96, 132001 (2006)]

me = 44175% MeV

and [R. Garcia-Martin, R. Kaminski, J. R. Pelaez, J. Ruiz de Elvira, PRL 107,

072001 (2011)]
me = 4571715 MeV
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.0 mass

* In NJL ¢ mass is given by m, = v/4m*2 + m2 being m* the quark constituent
mass obtained from the gap equation of the model. In our case we have
m* = 214 MeV and m, = 139.7 MeV with a 4d cut-off.

¢ Analysis on experimental data gives for this particle [Caprini, Colangelo,
Leutwyler, PRL 96, 132001 (2006)]

me = 44175° MeV

and [R. Garcia-Martin, R. Kaminski, J. R. Pelaez, J. Ruiz de Elvira, PRL 107,
072001 (2011)]

me = 4571715 MeV

® Our model provides
me = 451 £ 20 MeV

the error arising from string tension, in close agreement with these results.
This permits us to conclude that o particle is a glue particle arising from the
Yang-Mills part of the QCD Lagrangian, in agreement with recent studies [e.g.
G. Mennessier, S. Narison, X.-G. Wang, PLB696, 40 (2011) and refs. therein.].
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-Confinement (1)

® In order to evaluate confinement in a pure Yang-Mills theory we have to
evaluate [P. Gonzéalez, V. Mathieu, and V. Vento, PRD 84, 114008 (2011)]:

_2%r

d’pas(p)A(p)eP™
7T

Vi(x) =
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-Confinement (1)

® In order to evaluate confinement in a pure Yang-Mills theory we have to
evaluate [P. Gonzéalez, V. Mathieu, and V. Vento, PRD 84, 114008 (2011)]:

_2CF
7T

Vi(x) = d’pars () A(p)e’™

® Running coupling in the infrared takes the form [P. Boucaud et al. (2004), M.
Frasca, arXiv:0802.1183 [hep-th]]
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-Confinement (1)

® In order to evaluate confinement in a pure Yang-Mills theory we have to
evaluate [P. Gonzéalez, V. Mathieu, and V. Vento, PRD 84, 114008 (2011)]:

_2%r

7

Vi(x) = d’pas (p)A(p)e™™™

® Running coupling in the infrared takes the form [P. Boucaud et al. (2004), M.
Frasca, arXiv:0802.1183 [hep-th]]

¢ This implies for the potential

4 2 iy, —(n+iHm —myr
_as(40) (94 (2 + 1) 7; | (—1) i 2T e
A* Or K (Z) 1+e (2n+1)m r

n=0

V(r) =

and due to massive excitations one gets a screened potential. This appears to
agree very well with the conclusions given in [P. Gonzalez, V. Mathieu, and V.
Vento, PRD 84, 114008 (2011)] but not in agreement with Cornell potential

ed simulations.
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-Confinement (2)

® In order to get the right behavior a one-loop correction is needed as we have
just proved that one-gluon exchange is not enough to get confinement.
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-Confinement (2)

® In order to get the right behavior a one-loop correction is needed as we have
just proved that one-gluon exchange is not enough to get confinement.

® Indeed, the next to leading order terms give [M. Frasca, arxiv.:0802.1183
[hep-th]]

A1 (p) = A(p)

2 3
C1 C2 p —35
14+ —+ = (1—ca~—= —I—O(a 2) i
3 Oés( C3A2> § ]

g
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A1 (p) = A(p)

2 3
C1 C2 p — 5
1—|——1‘|-—S (1—63—|2> —I-O(Ots 2)] .

g

* This correction provides the needed p* Gribov contribution to the propagator to
get a linear term in the potential, taking into account the behavior of the
running coupling that increases as the fourth power of momenta.




-Confinement (2)

In order to get the right behavior a one-loop correction is needed as we have
just proved that one-gluon exchange is not enough to get confinement.

Indeed, the next to leading order terms give [M. Frasca, arxiv:0802.1183
[hep-th]]

A1r(p) = A(p)

2 3
C1 C2 D _3
1+1+%(1—C3Z\2>+O(Oﬂ32)].

g

This correction provides the needed p* Gribov contribution to the propagator to
get a linear term in the potential, taking into account the behavior of the
running coupling that increases as the fourth power of momenta.

Truncated Dyson-Schwinger equations, as provided in [P. Gonzalez, V.
Mathieu, and V. Vento, PRD 84, 114008 (2011)], agree with our conclusions at
one-gluon exchange level.
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-Confinement (2)

In order to get the right behavior a one-loop correction is needed as we have
just proved that one-gluon exchange is not enough to get confinement.

Indeed, the next to leading order terms give [M. Frasca, arxiv:0802.1183
[hep-th]]

A1r(p) = A(p)

2 3
C1 C2 D _3
1—|—1—|—%(163Z\2>—|—O(Oﬁ32)]

g

This correction provides the needed p* Gribov contribution to the propagator to
get a linear term in the potential, taking into account the behavior of the
running coupling that increases as the fourth power of momenta.

Truncated Dyson-Schwinger equations, as provided in [P. Gonzalez, V.
Mathieu, and V. Vento, PRD 84, 114008 (2011)], agree with our conclusions at
one-gluon exchange level.

This result is in agreement with expectations from Cornwall’'s analysis [J. M.
Cornwall, Phys. Rev. D 26, 1453 (1982)] that the gluon mass gets a
dependence on momenta [see also Binosi, Aguilar, Papavassilioul].
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.Conclusions

® We provided a strong coupling expansion both for classical and quantum field
theory of a massless quartic scalar field.
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and its very nature is gluonic and not a tetraquark state.
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.Conclusions

We provided a strong coupling expansion both for classical and quantum field
theory of a massless quartic scalar field.

A set of classical solutions is proved to exist for the Yang-Mills field, instantons,
that support the view of a trivial infrared fixed point.

A low-energy limit of QCD is so obtained that reduces to a non-local
Nambu-Jona-Lasinio model with all the parameters and the form factor
properly fixed.

o meson gets a mass in close agreement with recent studies on wr-scattering
and its very nature is gluonic and not a tetraquark state.

Confinement can emerge in all this picture.

Thanks a lot to Marco Ruggieri for very helpful comments and the
code for numerical Dyson-Schwinger.

Low energy limit of QCD and the emerging of confinement — p. 25/25




	Plan of the talk
	Classical field theory: Scalar field
	Classical field theory: Scalar field
	Classical field theory: Scalar field

	Classical field theory: Scalar field
	Classical field theory: Scalar field
	Classical field theory: Scalar field
	Classical field theory: Scalar field

	Classical field theory: Scalar field
	Classical field theory: Scalar field
	Classical field theory: Scalar field

	Classical field theory: Yang-Mills field (1)
	Classical field theory: Yang-Mills field (1)
	Classical field theory: Yang-Mills field (1)
	Classical field theory: Yang-Mills field (1)

	Classical field theory: Yang-Mills field (2)
	Classical field theory: Yang-Mills field (2)
	Classical field theory: Yang-Mills field (2)
	Classical field theory: Yang-Mills field (2)

	Classical field theory: Yang-Mills field (3)
	Classical field theory: Yang-Mills field (3)
	Classical field theory: Yang-Mills field (3)
	Classical field theory: Yang-Mills field (3)
	Classical field theory: Yang-Mills field (3)

	Yang-Mills-Green function
	Yang-Mills-Green function
	Yang-Mills-Green function

	Lattice computations
	Lattice computations
	Lattice computations

	Quantum field theory: Scalar field (1)
	Quantum field theory: Scalar field (1)
	Quantum field theory: Scalar field (1)

	Quantum field theory: Scalar field (2)
	Quantum field theory: Scalar field (2)
	Quantum field theory: Scalar field (2)

	Quantum field theory: Yang-Mills field (1)
	Quantum field theory: Yang-Mills field (1)
	Quantum field theory: Yang-Mills field (1)

	Quantum field theory: Yang-Mills field (2)
	Quantum field theory: Yang-Mills field (2)
	Quantum field theory: Yang-Mills field (2)
	Quantum field theory: Yang-Mills field (2)

	Quantum field theory: Yang-Mills field (3)
	QCD at the infrared limit (1)
	QCD at the infrared limit (1)
	QCD at the infrared limit (1)
	QCD at the infrared limit (1)

	QCD at the infrared limit (2)
	QCD at the infrared limit (2)
	QCD at the infrared limit (2)
	QCD at the infrared limit (2)

	QCD at the infrared limit (3)
	QCD at the infrared limit (3)
	QCD at the infrared limit (3)
	QCD at the infrared limit (3)

	QCD at the infrared limit (4)
	QCD at the infrared limit (4)
	QCD at the infrared limit (4)

	Bosonization
	Bosonization
	Bosonization
	Bosonization

	Instanton liquid
	Instanton liquid
	Instanton liquid

	$sigma $ mass
	$sigma $ mass
	$sigma $ mass

	Confinement (1)
	Confinement (1)
	Confinement (1)

	Confinement (2)
	Confinement (2)
	Confinement (2)
	Confinement (2)
	Confinement (2)

	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Conclusions


