Paper with a proof of confinement has been accepted

28/03/2018

Recently, I wrote a paper together with Masud Chaichian (see here) containing a mathematical proof of confinement of a non-Abelian gauge theory based on Kugo-Ojima criterion. This paper underwent an extended review by several colleagues well before its submission. One of them has been Taichiro Kugo, one of the discoverers of the confinement criterion, that helped a lot to improve the paper and clarify some points. Then, after a review round of about two months, the paper has been accepted in Physics Letters B, one of the most important journals in particle physics.

This paper contains the exact beta function of a Yang-Mills theory. This confirms that confinement arises by the combination of the running coupling and the propagator. This idea was around in some papers in these latter years. It emerged as soon as people realized that the propagator by itself was not enough to grant confinement, after extended studies on the lattice.

It is interesting to point out that confinement is rooted in the BRST invariance and asymptotic freedom. The Kugo-Ojima confinement criterion permits to close the argument in a rigorous way yielding the exact beta funtion of the theory.

Advertisements

Good news from Moriond

20/03/2018

Some days ago, Rencontres of Moriond 2018 ended with the CERN presenting a wealth of results also about the Higgs particle. The direction that the two great experiments, ATLAS and CMS, took is that of improving the measurements on the Standard Model as no evidence has been seen so far of possible new particles. Also, the studies of the properties of the Higgs particle have been refined as promised and the news are really striking.

In a communicate to the public (see here), CERN finally acknowledge, for the first time, a significant discrepancy between data from CMS and Standard Model for the signal strengths in the Higgs decay channels. They claim a 17% difference. This is what I advocated for some years and I have published in reputable journals. I will discuss this below. I would like only to show you the CMS results in the figure below.

ATLAS, by its side, is seeing significant discrepancy in the ZZ channel (2\sigma) and a 1\sigma compatibility for the WW channel. Here are their results.

On the left the WW channel is shown and on the right there are the combined \gamma\gamma and ZZ channels.

The reason of the discrepancy is due, as I have shown in some papers (see here, here and here), to the improper use of perturbation theory to evaluate the Higgs sector. The true propagator of the theory is a sum of Yukawa-like propagators with a harmonic oscillator spectrum. I solved exactly this sector of the Standard Model. So, when the full propagator is taken into account, the discrepancy is toward an increase of the signal strength. Is it worth a try?

This means that this is not physics beyond the Standard Model but, rather, the Standard Model in its full glory that is teaching something new to us about quantum field theory. Now, we are eager to see the improvements in the data to come with the new run of LHC starting now. In the summer conferences we will have reasons to be excited.


%d bloggers like this: