In the aftermath of ICHEP 2016

06/08/2016

ICHEP2016

ATLAS and CMS nuked our illusions on that bump. More than 500 papers were written on it and some of them went through Physical Review Letters. Now, we are contemplating the ruins of that house of cards. This says a lot about the situation in hep in these days. It should be emphasized that people at CERN warned that that data were not enough to draw a conclusion and if they fix the threshold at 5\sigma a reason must exist. But carelessness acts are common today if you are a theorist and no input from experiment is coming for long.

It should be said that the fact that LHC could confirm the Standard Model and nothing else is one of the possibilities. We should hope that a larger accelerator could be built, after LHC decommissioning, as there is a long way to the Planck energy that we do not know how to probe yet.

What does it remain? I think there is a lot yet. My analysis of the Higgs sector is still there to be checked as I will explain in a moment but this is just another way to treat the equations of the Standard Model, not beyond it. Besides, for the end of the year they will reach 30\ fb^{-1}, almost triplicating the actual integrated luminosity and something interesting could ever pop out. There are a lot of years of results ahead and there is no need to despair. Just to wait. This is one of the most important activities of a theorist. Impatience does not work in physics and mostly for hep.

About the signal strength, things seem yet too far to be settled. I hope to see better figures for the end of the year. ATLAS is off the mark, going well beyond unity for WW, as happened before. CMS claimed 0.3\pm 0.5 for WW decay, worsening their excellent measurement of 0.72^{+0.20}_{-0.18} reached in Run I. CMS agrees fairly well with my computations but I should warn that the error bar is yet too large and now is even worse. I remember that the signal strength is obtained by the ratio of the measured cross section to the one obtained from the Standard Model. The fact that is smaller does not necessarily mean that we are beyond the Standard Model but that we are just solving the Higgs sector in a different way than standard perturbation theory. This solution entails higher excitations of the Higgs field but they are strongly depressed and very difficult to observe now. The only mark could be the signal strength for the observed Higgs particle. Finally, the ZZ channel is significantly less sensible and error bars are so large that one can accommodate whatever she likes yet. Overproduction seen by ATLAS is just a fluctuation that will go away in the future.

The final sentence to this post is what we have largely heard in these days: Standard Model rules.