NASA and warp drive: An update

25/04/2015

ResearchBlogging.org There is some excitement in the net about some news of Harold White’s experiment at NASA. I have uncovered it by chance at a forum. This is a well-frequented site with people at NASA posting on it and regularly updating about the work that they are carrying out. You can also have noticed some activity in the Wikipedia’s pages about it (see here at the section on EmDrive and here). Wikipedia’s section on EmDrive explains in a few lines what is going on. Running a laser inside the RF cavity of the device they observed an unusual effect. They do not know yet if this could be better explained by more mundane reasons like air heating inside the cavity itself. They will repeat the measurements in a vacuum chamber to exclude such a possibility. I present here some of the slides used by White to recount about this NASA White ExperimentNASA White experimentNASA White experimentThis is the current take by Dr. White as reported by one of his colleagues too prone to leak on nasaspaceflight forum:

 …to be more careful in declaring we’ve observed the first lab based space-time warp signal and rather say we have observed another non-negative results in regards to the current still in-air WFI tests, even though they are the best signals we’ve seen to date. It appears that whenever we talk about warp-drives in our work in a positive way, the general populace and the press reads way too much into our technical disclosures and progress.

I would like to remember that White is not using exotic matter at all. Rather, he is working with strong RF fields to try to develop a warp bubble. This was stated here even if implicitly. Finally, an EmDrive device has been properly described here. Using strong external fields to modify locally a space-time has been described here. If this will be confirmed in the next few months, it will represent a major breakthrough in experimental general relativity since Eddington  confirmed the bending of light near the sun. Applications would follow if this idea will appear scalable but it will be a shocking result anyway. We look forward to hear from White very soon.

Marco Frasca (2005). Strong coupling expansion for general relativity Int.J.Mod.Phys.D15:1373-1386,2006 arXiv: hep-th/0508246v3


That Higgs is trivial!

05/04/2015

ResearchBlogging.org

Notwithstanding LHC has seen the particle, the Higgs sector of the Standard Model has some serious problems. This fact yielded more than one headache to physicists. One of these difficulties is called technically “triviality“. Michael AizenmanThe scalar field theory, that is so well defined classically, does not exist as a quantum field theory unless is non-interacting. There is a wonderful paper by Michael Aizenman that shows that this is true for dimensions 5 and higher. So, one should think that, as we live in four dimensions, there is no reason to worry. The point is that Michael Aizenman left the question in four dimensions open. So, does Higgs particle exist or not and how does it yield mass if it will not interact? CERN said to us that Higgs particle is there and so, in some way, the scalar sector of the Standard Model must properly work. Aizenman’s proof was on 1981 but what is the situation now? An answer is in this article on Scholarpedia. As stated by the author Ulli Wolff

Triviality of lattice phi^4 theory in this sense has been rigorously proven for D>4 while for the most interesting borderline case D=4 we have only partial results but very strong evidence from numerical simulations.

While there is another great expert on quantum field theory, Franco Strocchi, in his really worth to read book saying

The recent proof of triviality of phi^4 in 3 + 1 spacetime dimensions indicates that the situation becomes worse in the real world, and in particular the renormalized perturbative series of the phi^4 model seems to have little to do with the non-perturbative solution.

We see that experts do not completely agree about the fact that a proof exists or not but, for sure, the scalar theory in four dimensions cannot interact and the Standard Model appears in serious troubles.

Before to enter more in details about this matter, let me say that, even if Strocchi makes no citation about where the proof is, he is the one being right. We have proof about this, the matter is now well understood and again we are waiting for the scientific community to wake up. Also, the Standard Model is surely secured and there is no serious risk about the recent discovery by CERN of the Higgs particle.

The proof has been completed recently by Renata Jora with this paper on arxiv. Renata extended the proof an all the energy range. I met her in Montpellier (France) at this workshop organized by Stephan Narison. We have converging interests in research. Renata’s work is based on a preceding proof, due to me and Igor Suslov, showing that, at large coupling, the four dimensional theory is indeed trivial. You can find the main results here and here. Combining these works together, we can conclude that Strocchi’s statement is correct but there is no harm for the Standard Model as we will discuss in a moment. Also the fact that the perturbation solution of the model is not properly describing the situation can be seen from the strictly non-analytical behaviours seen at strong coupling that makes impossible to extend what one gets at small coupling to that regime.

The fact that CERN has indeed seen the Higgs particle and that the Higgs sector of the Standard Model is behaving properly, unless a better understanding will emerge after the restart of the LHC, has been seen with the studies of the propagators of the Yang-Mills theory in the Landau gauge. The key paper is this where the behaviour of the running coupling of the theory was obtained on all the energy range from lattice computations.

Running Coupling

This behaviour shows that, while the theory is trivial at both the extremes of the energy range, there is an intermediate regime where we can trust the theory and treat it as an effective one. There the coupling does not run to zero but moves around some finite non-null value. Of course, all this is just saying that this theory must be superseded by an extended one going to higher energies (supersymmetry? Technicolor?) but it is reasonable to manage the theory as if all this just works at current energies. Indeed, LHC has shown that a Higgs particle is there.

So, triviality is saying that the LHC will find something new for sure. Today, beams moved again inside the accelerator. We are eager to see what will come out form this wonderful enterprise.

Aizenman, M. (1981). Proof of the Triviality of Field Theory and Some Mean-Field Features of Ising Models for Physical Review Letters, 47 (12), 886-886 DOI: 10.1103/PhysRevLett.47.886

Renata Jora (2015). $Φ^4$ theory is trivial arXiv arXiv: 1503.07298v1

Marco Frasca (2006). Proof of triviality of $λφ^4$ theory Int.J.Mod.Phys.A22:2433-2439,2007 arXiv: hep-th/0611276v5

Igor M. Suslov (2010). Asymptotic Behavior of the \Beta Function in the Φ^4 Theory: A Scheme
Without Complex Parameters J.Exp.Theor.Phys.111:450-465,2010 arXiv: 1010.4317v1

I. L. Bogolubsky, E. -M. Ilgenfritz, M. Müller-Preussker, & A. Sternbeck (2009). Lattice gluodynamics computation of Landau-gauge Green’s functions in the deep infrared Phys.Lett.B676:69-73,2009 arXiv: 0901.0736v3


New Lucasian Professor

19/03/2015

After a significant delay, Cambridge University made known the name of Michael Green‘s successor at the Lucasian chair.Michael Cates The 19th Lucasian Professor is Michael Cates, Professor at University of Edinburgh and Fellow of the Royal Society. Professor Cates is worldwide known for his researches in the field of soft condensed matter. It is a well deserved recognition and one of the best choice ever for this prestigious chair. So, we present our best wishes to Professor Cates of an excellent job in this new role.


Standard Model at the horizon

08/12/2014

ResearchBlogging.org

Hawking radiation is one of the most famous effects where quantum field theory combines successfully with general relativity. Since 1975 when Stephen Hawking uncovered it, this result has obtained a enormousStephen Hawking consideration and has been derived in a lot of different ways. The idea is that, very near the horizon of a black hole, a pair of particles can be produced one of which falls into the hole and the other escapes to infinity and is seen as emitted radiation. The overall effect is to drain energy from the hole, as the pair is formed at its expenses, and its ultimate fate is to evaporate. The distribution of this radiation is practically thermal and a temperature and an entropy can be attached to the black hole. The entropy is proportional to the area of the black hole computed at the horizon, as also postulated by Jacob Bekenstein, and so, it can only increase. Thermodynamics applies to black holes as well. Since then, the quest to understand the microscopic origin of such an entropy has seen a huge literature production with the notable Jacob Bekensteinunderstanding coming from string theory and loop quantum gravity.

In all the derivations of this effect people generally assumes that the particles are free and there are very good reasons to do so. In this way the theory is easier to manage and quantum field theory on curved spaces yields definite results. The wave equation is separable and exactly solvable (see here and here). For a scalar field, if you had a self-interaction term you are immediately in trouble. Notwithstanding this, in  the ’80 UnruhWilliam Unruh and Leahy, considering the simplified case of two dimensions and Schwarzschild geometry, uncovered a peculiar effect: At the horizon of the black the interaction appears to be switched off (see here). This means that the original derivation by Black-hole-model by Kip ThorneHawking for free particles has indeed a general meaning but, the worst conclusion, all particles become non interacting and massless at the horizon when one considers the Standard Model! Cooper will have very bad times crossing Gargantua’s horizon.

Turning back from science fiction to reality, this problem stood forgotten for all this time and nobody studied this fact too much. The reason is that the vacuum in a curved space-time is not trivial, as firstly noted by Hawking, and mostly so when particles interact. Simply, people has increasing difficulties to manage the theory that is already complicated in its simplest form. Algebraic quantum field theory provides a rigorous approach to this (e.g. see here). These authors consider an interacting theory with a \varphi^3 term but do perturbation theory (small self-interaction) probably hiding in this way the Unruh-Leahy effectValter Moretti.

The situation can change radically if one has exact solutions. A \varphi^4 classical theory can be indeed solved exactly and one can make it manageable (see here). A full quantum field theory can be developed in the strong self-interaction limit (see here) and so, Unruh-Leahy effect can be accounted for. I did so and then, I have got the same conclusion for the Kerr black hole (the one of Interstellar) in four dimensions (see here). This can have devastating implications for the Standard Model of particle physics. The reason is that, if Higgs field is switched off at the horizon, all the particles will lose their masses and electroweak symmetry will be recovered. Besides, further analysis will be necessary also for Yang-Mills fields and I suspect that also in this case the same conclusion has to hold. So, the Unruh-Leahy effect seems to be on the same footing and importance of the Hawking radiation. A deep understanding of it would be needed starting from quantum gravity. It is a holy grail, the switch-off of all couplings, kind of.

Further analysis is needed to get a confirmation of it. But now, I am somewhat more scared to cross a horizon.

V. B. Bezerra, H. S. Vieira, & André A. Costa (2013). The Klein-Gordon equation in the spacetime of a charged and rotating black hole Class. Quantum Grav. 31 (2014) 045003 arXiv: 1312.4823v1

H. S. Vieira, V. B. Bezerra, & C. R. Muniz (2014). Exact solutions of the Klein-Gordon equation in the Kerr-Newman background and Hawking radiation Annals of Physics 350 (2014) 14-28 arXiv: 1401.5397v4

Leahy, D., & Unruh, W. (1983). Effects of a λΦ4 interaction on black-hole evaporation in two dimensions Physical Review D, 28 (4), 694-702 DOI: 10.1103/PhysRevD.28.694

Giovanni Collini, Valter Moretti, & Nicola Pinamonti (2013). Tunnelling black-hole radiation with $φ^3$ self-interaction: one-loop computation for Rindler Killing horizons Lett. Math. Phys. 104 (2014) 217-232 arXiv: 1302.5253v4

Marco Frasca (2009). Exact solutions of classical scalar field equations J.Nonlin.Math.Phys.18:291-297,2011 arXiv: 0907.4053v2

Marco Frasca (2013). Scalar field theory in the strong self-interaction limit Eur. Phys. J. C (2014) 74:2929 arXiv: 1306.6530v5

Marco Frasca (2014). Hawking radiation and interacting fields arXiv arXiv: 1412.1955v1


That’s a Higgs but how many?

17/11/2014

ResearchBlogging.org

CMS and ATLAS collaborations are yet up to work producing results from the datasets obtained in the first phase of activity of LHC. The restart is really near the corner and, maybe already the next summer, things can change considerably. Anyway what they get from the old data can be really promising and rather intriguing. This is the case for the recent paper by CMS (see here). The aim of this work is to see if a heavier state of Higgs particle exists and the kind of decay they study is Zh\rightarrow l^+l^-bb. That is, one has a signature with two leptons moving in opposite directions, arising from the dacy of the Z, and two bottom quarks arising from the decay of the Higgs particle. The analysis of this decay aims to get hints of existence of a heavier pseudoscalar Higgs state. This can be greatly important for SUSY extensions of the Standard Model that foresee more than one Higgs particle.

Often CMS presents its results with some intriguing open questions and also this is the case and so, it is worth this blog entry. Here is the main result

CMS study of Zh->llbbThe evidence, as said in the paper, is that there is a 2.6-2.9 sigma evidence at 560 GeV and a smaller one at around 300 GeV. Look elsewhere effect reduces the former at 1.1 sigma and the latter is practically negligible. Overall, this is pretty negligible but, as always, with more data at the restart, could become something real or just fade away. It should be appreciated the fact that a door is left open anyway and a possible effect is pointed out.

My personal interpretation is that such higher excitations do exist but their production rates are heavily suppressed with the respect to the observed ground state at 126 GeV and so, negligible with the present datasets. I am also convinced that the current understanding of the breaking of SUSY, currently adopted in MSSM-like to go beyond the Standard Model, is not the correct one provoking the early death of such models. I have explained this in a coupled of papers of mine (see here and here). It is my firm conviction that the restart will yield exciting results and we should be really happy to have such a powerful machine in our hands to grasp them.

Marco Frasca (2013). Scalar field theory in the strong self-interaction limit Eur. Phys. J. C (2014) 74:2929 arXiv: 1306.6530v5

Marco Frasca (2012). Classical solutions of a massless Wess-Zumino model J.Nonlin.Math.Phys. 20:4, 464-468 (2013) arXiv: 1212.1822v2


The question of the mass gap

10/09/2014

ResearchBlogging.org

Some years ago I proposed a set of solutions to the classical Yang-Mills equations displaying a massive behavior. For a massless theory this is somewhat unexpected. After a criticism by Terry Tao I had to admit that, for a generic gauge, such solutions are just asymptotic ones assuming the coupling runs to infinity (see here and here). Although my arguments on Yang-Mills theory were not changed by this, I have found such a conclusion somewhat unsatisfactory. The reason is that if you have classical solutions to Yang-Mills equations that display a mass gap, their quantization cannot change such a conclusion. Rather, one should eventually expect a superimposed quantum spectrum. But working with asymptotic classical solutions can make things somewhat involved. This forced me to choose the gauge to be always Lorenz because in such a case the solutions were exact. Besides, it is a great success for a physicist to find exact solutions to fundamental equations of physics as these yield an immediate idea of what is going on in a theory. Even in such case we would get a conclusive representation of the way the mass gap can form.

Finally, after some years of struggle, I was able to get such a set of exact solutions to the classical Yang-Mills theory displaying a mass gap (see here). Such solutions confirm both the Tao’s argument that an all equal component solution for Yang-Mills equations cannot hold in any gauge and also my original argument that an all equal component solution holds, in a general case, only asymptotically with the coupling running to infinity. But classically, there exist solutions displaying a mass gap that arises from the nonlinearity of the equations of motion. The mass gap goes to zero as the coupling does. Translating this in the quantum realm is straightforward as I showed for the Lorenz (Landau) gauge. I hope all this will help to better elucidate all the physics around strong interactions. My efforts since 2005 went in that direction and are still going on.

Marco Frasca (2009). Mapping a Massless Scalar Field Theory on a Yang-Mills Theory: Classical Case Mod. Phys. Lett. A 24, 2425-2432 (2009) arXiv: 0903.2357v4

Marco Frasca (2014). Exact solutions for classical Yang-Mills fields arXiv arXiv: 1409.2351v1


Higgs what?

06/09/2014

ResearchBlogging.org

In these days it has been announced the new version of Review of Particle Physics by the Particle Data Group (PDG). This is the bread and butter of any particle physicist and contains all the relevant data about this area of research. It is quite common for us to search the on-line version or using the booklet to know a mass or a decay rate. After the first run of LHC data gathering about Higgs particle, this edition contains a bunch of fundamental informations about it and I post a part of them.

Higgs on PDG

It is Standard Model Higgs! No, not so fast. Take a look at the WW final state. It is somewhat low but yes, it is perfectly consistent with the Standard Model. Also, error bars are somewhat large to conclude something definitive. So, let us take a look nearer at these strengths.

Higgs decay to WWWe discover that the strengths measured by CMS are really low and takes down this value. Indeed, this is consistent with my proposal here. I get 0.68 for both channels WW and ZZ. On the other side, ATLAS moves all upward consistently and there is this strange behaviour compensating each other. So, let us also take a look at the ZZ strength. PDG yields

Higgs decay to ZZagain CMS agrees with my conclusions and ATLAS moves all upward to compensate. But both these results, due to the large error bars, agree rather well with the Standard Model. So, I looked for the publication by CMS  that were produced till today if one or both these analyses were improved. The result was that CMS improved the measure of the strength in the WW channel to leptons (see here). What they measure is

\frac{\sigma}{\sigma_{SM}}=0.72^{+0.20}_{-0.18}.

The error is significantly smaller and the result striking. It is bending in the “wrong” turn loosing higgsness. It would be interesting to understand why CMS appear to get results downward for these strengths and ATLAS more upward compensating each other toward the Standard Model. On the other side, I should admire the more aggressive approach by CMS with their results more and more similar to my expectations. I am just curious to see with the restart of LHC what will happen to these data that CMS sharpened to such a point.

Marco Frasca (2013). Scalar field theory in the strong self-interaction limit Eur. Phys. J. C (2014) 74:2929 arXiv: 1306.6530v5

CMS Collaboration (2013). Measurement of Higgs boson production and properties in the WW decay
channel with leptonic final states JHEP 01 (2014) 096 arXiv: 1312.1129v2


Follow

Get every new post delivered to your Inbox.

Join 74 other followers

%d bloggers like this: